The Four Most Common Types of Epidemiological Studies
There are four most common types of epidemiological studies:
Cohort Study
Case Control Study
Occupational Epidemiological Study
Cross-Sectional Study
This chapter explains why and when epidemiologists prefer one type of study over another and describes strengths and weaknesses of each approach.
To begin an epidemiologic study, we decide what to study.
For this discussion, let's say we want to study prenatal exposure to electric and magnetic fields and the effect on a baby's birthweight. We look at the existing literature on birthweight to assess current knowledge and data. It is important to know if others have conducted similar studies in case they have uncovered specific design limitations or useful results, and this information is helpful in understanding the context of one's own study.
We believe that known risks include prematurity, poor prenatal care, low socioeconomic status, non-white ethnicity, large size of the mother, younger or older mothers, smoking, alcohol consumption and a host of other factors. Electric and magnetic field exposures are not known risk factors but have not been studied extensively. Therefore we wish to study them. 
Cohort Study
The "What will happen to me?" study follows a group of healthy people with different levels of exposure and assesses what happens to their health over time. It is a desirable design because exposure precedes the health outcome — a condition necessary for causation — and is less subject to bias because exposure is evaluated before the health status is known. The cohort study is also expensive, time-consuming and the most logistically difficult of all the studies. It is most useful for relatively common diseases. To assess suitability, we find out the commonality of the disease we wish to study. Does it occur in 10 percent of all births, 1 percent of births, or 0.001 percent of births? For example, if low weight occurs in 10 percent or more of all births, then we might investigate a relatively small group of newborns, say 200 to 400, and characterize them with respect to their exposures during pregnancy. We would expect to see 20 to 40 low-weight babies in this group. We would want to know if, while pregnant, their mother's exposure to electric and magnetic fields was different from the other 180 to 360 births.
The cohort study approach is good for our hypothetical study because we can identify a number of pregnant women, characterize their exposure during almost their entire pregnancies and assess the babies' weights at birth. Thus we limit the possibility of investigator preferences, or "bias," affecting the selection of study subjects. We must make sure nearly everyone selected for our study participates, because those not participating may be different from those who do, causing another type of bias. The assumption of risk (such as exposure to electric and magnetic fields during pregnancy) necessarily precedes the outcome (birth), and that is a necessary condition for inferring a cause.
Finally, because we selected our study subjects on the basis of their exposure only, the cohort approach enables us to look at other pregnancy outcomes such as birth defects, spontaneous abortion or increased mortality, in addition to birth weight.
Case-Control Study
The "why me?" study investigates the prior exposure of individuals with a particular health condition and those without it to infer why certain subjects, the "cases," become ill and others, the "controls," do not. The main advantage of the case-control study is that it enables us to study rare health outcomes without having to follow thousands of people, and is therefore generally quicker, cheaper and easier to conduct than the cohort study.
One primary disadvantage of a case-control study is a greater potential for bias. Since the health status is known before the exposure is determined, the study doesn't allow for broader-based health assessments, because only one type of disease has been selected for study. If the condition we wish to study is rare — for instance, affecting less than 5 percent of the population — the cohort approach would not identify enough subjects from which to draw statistically reliable inferences, unless we looked at a very large number of subjects. For example, in our study of low birthweight, if between 500 and several thousand births would be needed to get 10 to 50 low-weight births, developing exposure information for all of those births would be cumbersome, expensive and time-consuming.
In the case-control design, we can review birth certificates of several thousand newborns and find a certain number that exhibited low birthweight — 50 to 100, for example — and a comparable number of normal birthweights, and compare them with respect to electric and magnetic field exposures. This approach has the advantage of identifying a sufficient number of cases of the rare outcome we wish to study out of a population of thousands of births. It then requires us to develop exposure and risk factor data only for the limited number of individuals in our study. Thus, it is quicker, easier and less expensive than the cohort design, which would require such information for all of the several thousand births. It is an approach commonly used for studies of cancers and other rare diseases. Also, because subjects were selected on the basis of outcome only, we can evaluate a variety of exposures, such as electric fields, magnetic fields, chemical exposures and so forth.
The case-control study has the disadvantage of selecting cases and controls after both the outcome and the assumption of risk have occurred. This makes substantial bias a possibility because we may inadvertently favor certain births for inclusion in our study, and because certain women who should have been eligible for our study were not (those pregnant mothers whose fetus spontaneously aborted, for instance). Once chosen on the basis of one outcome (low birthweight), our subjects cannot be analyzed for certain other outcomes (spontaneous abortion), as they could in a cohort study.
Another consideration in choosing an epidemiological design is the commonness of the risk factor. Common exposures can be studied by either the cohort or case-control design. Rare exposures are best studied by the cohort method since groups are selected on the basis of their exposure status.
Consider our study at hand. Most of us are exposed at home to very low magnetic fields — under 10 milliGauss (mG). But some homes score as high as 40 mG, or higher, and some occupations measure exposures in the hundreds or thousands of mG. Let's define exposed houses as those having at least 10 mG. If, in our case-control study of low birthweight births, we were to compare the residential magnetic field exposure of the births, we likely would see few, if any, exposed houses and would not be able to draw any conclusions. On the other hand, if we conducted a cohort study, we could select houses with magnetic field exposures over 10 mG, and then compare the birthweights of babies in those houses with birthweights of babies in houses with magnetic fields less than 10 mG. Since low birthweight is far more common than high magnetic field exposure, the cohort design is more likely to produce a useful result. 

Occupational Epidemiological Study
The occupational study can be designed using any standard epidemiologic design, simply selecting working people with particular jobs or exposures as subjects. The main advantage of this approach is that workers often have substantially higher exposures to certain risk factors than the typical population, which increases our chances of detecting an effect if one truly exists. The main disadvantages are that workers with various jobs differ substantially from one another in terms of risks, and that the working population is substantially different from the nonworking one (such the rich, elderly or disabled), making it difficult to generalize to populations with some nonworking people. We usually look to occupational settings to exploit situations of high exposure. The number of eligible subjects in these settings is smaller than in the general population, but that is more than balanced by the extreme levels of exposures often seen in the workplace, which increase our chances of seeing effects.
There are two caveats to occupational epidemiological studies. First, in the workplace, people are exposed to a variety of risk factors that may affect results. For example, many workers are exposed to a variety of chemicals (such as solvents) that are known or suspected carcinogens; to a variety of electric and magnetic fields at different intensities and frequencies; and to other factors such as stress and poor ventilation or air quality.
Second, the number of people exposed to the risk factor we're interested in may be much smaller in the workplace than in residences (for example, fewer workers service an electric power transmission line than live near the line), so in some cases it may be difficult to identify a sufficient number of exposed workers. And it may be difficult to identify a comparison population of workers not exposed to the risk factor (or exposed at a substantially lower level) who also have comparable characteristics with respect to other possible risks. For instance, we would not compare construction workers to business executives because of likely differences in lifestyle and occupational risk. We would expect to see differences in cancer rates between the two groups based on those factors alone, and it would be difficult to separate those risks from our primary interest in the study of exposures to electric and magnetic fields. It is preferable to examine cancer rates among groups of similar workers, say among all telephone line repair workers, pole climbers, van drivers, dispatchers and supervisors. That is still not ideal, as many of these workers perform more than one task, but the approach is better than comparing telephone workers with business executives.
Cross-Sectional Study
The "Am I like my neighbors?" study compares groups in terms of their current health and exposure status and assesses their similarities. The main advantage is that the cross-sectional study is a particularly easy study to conduct, as we do not have to wait for the health outcome to occur or estimate what the level of exposure was likely to have been years ago. Its main disadvantage is that a cause can't be inferred, because only current health and exposure are being studied.
The cross-sectional study is the one in which we assess a group's health status and exposure status simultaneously. We might inquire about recent health problems (including breast cancer diagnosed in the past year) and assess the current electric and magnetic fields exposures in people's homes as part of the same survey. An important limitation of this approach is that it does not allow for changes over time, and thus cannot accommodate diseases that take time to develop. For example, someone exposed today to ionizing radiation may be diagnosed with leukemia (or another cancer) five, 10, or even 20 years from now, even though the leukemia may not be evident today, next week or next month. Therefore, much information may be lost by contemporaneous evaluation.
Implicit in the cross-sectional study is the assumption that the study population has been exposed for a long time and will continue to be exposed unless some intervention is effected. Although such studies can be used to identify possible associations and suggest worthwhile case-control or cohort studies for follow up, the cross-sectional study may not necessarily confirm causes.

Problems in Conducting Epidemiological Studies

Like any analytic methodology, epidemiology has its hazards. Following are discussions of the four common problems epidemiologists face in conducting their studies and interpreting results:

Selection Bias

Bias is a technical term for playing favorites in choosing study subjects or in assessing their exposure or disease status.

Once a study question has been formulated and study subjects identified, it is important that these subjects be recruited uniformly and that data about the health and exposure be collected consistently. If certain subjects are not enrolled in the study, or if information is collected differently from different subjects, the resulting bias could invalidate the study. There are many different forms of bias.

Selection bias can occur when not everyone eligible to be in a study can be selected as a subject, and when those selected are different from those excluded, in a systematic way. If we compare leukemia rates in male telephone workers of a certain age to the overall rate of leukemia in U.S. workers of the same age, we will probably find that the telephone workers have the lower rate of disease. If we compare leukemia rates in these telephone workers, however, to occurrences of leukemia among electric utility workers of the same age, there probably won't be a difference. This is because workers in jobs that require physical exertion, such as phone and utility workers, are apt to be healthier than more sedentary workers such as office workers. In this example, both telephone and utility workers have similar physical requirements.

To avoid selection bias we must select comparison populations that are similar except for the specific factors under study, and that's often difficult to do.

Recall Bias

Sometimes the subjects' ability to recall and report past experiences may be affected by their preconceived ideas about a possible health hazard. For example, residents of a town, annoyed at the noxious smell of a local toxic waste site, demand action. Epidemiologists are asked to conduct a health status survey to compare the rate of health problems among those who live near the site and those who live farther away.

When we ask subjects how often in the past year they experienced headaches, coughs or colds, those who believe that the site is the cause of their ill health are likely to be able to document many such occurrences. These anti-waste site folks may even remember that every time they felt ill they had been particularly bothered by the smell of the site. The smell of the site, in fact, may have made them more aware than they otherwise would be of each and every minor illness. It gave them something to blame. Subjects who do not blame the site for their health status, may have experienced exactly the same number of minor illnesses, but since they did not associate their headaches with the site, they may not have paid the headache much attention or made mental notes of when those headaches occurred.

To compensate for recall difference, the investigator may ask study subjects if they believe the site may be responsible for their problems, and then compare the rates of disease among those who do believe it and those who don't to determine if bias exists. If not, we can analyze the data directly. If so, we must adjust for it. Bias also can occur in many other aspects of data collection, and failure to prevent, accommodate or adjust for bias can invalidate studies.

Misclassification

Misclassification is a technical term for mislabeling or mischaracterizing a study subject, and may occur with disease or exposure. For example, patients who die of cancer are often misclassified on death certificates. They may have one type of cancer, but if the cancer spreads, they may ultimately die of something else — another type of cancer, or pneumonia, or heart failure, for instance. Depending on the physician, either may be reported on the death certificate — but unless the original cancer is recorded, the subject has been misclassified and the study results will be skewed.

Similarly, one can misclassify exposure. For example, in most studies of the health effects of cigarette smoking, exposure is determined by asking subjects if they smoke, and if so, how many cigarettes per day. Typically, people who recognize that smoking is undesirable underestimate the amount they smoke. Some even claim to be nonsmokers. When we classify these people as light smokers or nonsmokers, we unintentionally mislabel them.

If we are studying whether people who take care of their teeth get fewer cavities, we might ask people how often they brush their teeth. Those who brush regularly probably won't lie about it. Those who do not brush regularly may exaggerate how often they brush, since dentists tell us we are supposed to brush at least twice a day. Based on this incorrect data, we would mislabel some irregular brushers as regular brushers, and the results would show that a surprisingly small difference in brushing frequency makes a big difference in the number of cavities, a stronger effect than is really there. 

Confounding

Confounding is the technical term for finding an association for the wrong reason. It is associated with both the risk factor and the disease being studied, but need not be a risk factor for the disease under study. The confounding variable can either inflate or deflate the true relative risk.

For example, in two studies conducted in Denver, Colo., investigators found that children with leukemia were more likely to live in areas with large electric power lines than children without cancer. Critics argued that the true risk might be traffic density and exposure to traffic-related air pollutants. In fact, areas that are more developed and therefore more populated have both higher traffic densities and larger electric lines. Both factors were related, in other words, and both were found to be associated with the disease.

To resolve this confusion, investigators looked at both factors simultaneously. In the combined analysis in which homes with similar traffic density were compared, the association between power line size and leukemia persisted. In the combined analysis, however, in which homes with similar power line size were compared, the association between traffic density and leukemia did not persist. Epidemiologists could call traffic density the confounder and power line size the possible risk factor for disease. Research is still inconclusive on whether living near power lines causes disease, or whether living in areas of high-traffic density causes disease. More data are needed to confirm any risk factor. Many possible factors are being evaluated and power line size may itself be a confounder.

The presence of confounding in epidemiological studies is both a common and important phenomenon. Many, many variables may be confounders in any given study. Some of their effects may be small, others may be large. Failure to account for the most important confounders may cause investigators to question the validity of the results obtained. Given the large number of such factors, it is never possible to account for all potential confounders

Statistical Variation

Statistical variation is the technical term for chance fluctuations. Here's an example of statistical variation: we flip an evenly weighted coin 10 times. We don't expect always to get five heads and five tails. Nor do we expect to get 10 heads and no tails. More likely, the ratios will be four and six, or maybe seven and three. But, if we flip the coin 10,000 times, we would expect to get nearly 5,000 heads and 5,000 tails.

Similarly, even if disease rates in two populations (say 1 million people each) are identical, they may not appear so in a study. If we study two identical populations with identical risk factors and exposures, and pick a sample of people for our analyses (for example, 1,000 from each), it likely will turn out that the disease rates measured will be similar to one another but not identical. As the number of people in our study increases (to 10,000 subjects each), we expect our study-based estimates of the true disease rates in the entire populations to be more accurate. 

A Guide to Statistics and Data Analyses

Epidemiologists use statistical methods to determine whether the differences they see are real or due to chance fluctuations. We'll explain some general concepts of those statistical tools here, but won't venture into details of computation.http://www.facsnet.org/tools/ref_tutor/epidem/data.php3 - top
In general, epidemiologic indices reflect the likelihood that someone will get a particular disease if exposed to a particular risk factor compared to the likelihood of getting the disease without the exposure. Indices are based on samples of a larger population, and, because of statistical variation, we know the results will be at least a little different than if we were able to test the entire population. We use mathematical methods to estimate the effect of this chance variation in samples, to communicate the amount of uncertainty in the findings. One of the methods is the 95 percent confidence interval. 

The 95-Percent Confidence Interval

Let's return to the coin toss example from the last chapter. This time let's say we want to test whether the coin is evenly weighted, and we conduct several coin-flipping tests with various sample sizes.

We toss it 10 times and observe three heads. There is a mathematical formula (1.96 times standard deviation) that will tell us how much variation we could expect to see on either side of three if we did additional tests. This range most likely includes the true value — the percentage of heads we would see if we flipped the coin thousands of times. This range is the 95 percent confidence interval. The range for this example is from 0 to 6.5 (0 percent heads to 65 percent heads). This may mean that the coin is very unevenly weighted, making it land tails up most times. But it could also mean that if we tossed the coin more often we could get 50 percent heads.

We can narrow the 95 percent confidence interval by using a larger sample, since a larger sample reduces the chance variation. Let's say we toss the coin 100 times, this time observing 45 heads. For this result, the 95 percent confidence interval is 35 to 55. Because the confidence interval contains the value that represents an evenly balanced coin (50 percent), we still cannot rule out the possibility that the coin is fair. If we had gotten 36 heads when we ran our new test, the 95 percent confidence interval would be 27 heads to 45 heads, leading us to think the coin was unevenly weighted.

In epidemiological studies, relative risks are usually presented with 95 percent confidence intervals. For instance, the reported risk of leukemia from exposure to residential magnetic fields in a study might be 2.0 with a 95 percent confidence interval from 1.4 to 2.8. That means the "best guess" is that the increased risk is 100 percent, but it could be as low as 40 percent or as high as 180 percent.

It's important to note that even though our study may provide for a 95 percent confidence interval, there is still a chance — a 5 percent chance — that the true index value lies outside of the interval.

P-Values

P value (probability value) is another statistical measure that attempts to quantify uncertainty about whether an outcome is due to chance or whether it actually reflects a true difference. P values and confidence intervals are based on the same underlying concepts of probability.

Using a formula that considers the number of subjects or events, epidemiologists calculate a percent likelihood of chance outcome: 1 percent likelihood is expressed as a p value of .01, 5 percent by a p value of .05 and so on. There is not a firm division between what scientists consider true and not true, but traditionally a p value of .05 or less has been accepted as evidence of actual difference. That usually means there's one chance in 20 that the numbers would have come out that way by pure chance when there was no real effect.

Statistical Power

Statistical power is the probability that one can detect an effect if there really is one. It is highly influenced by the size of a study (the number of subjects), just as in the coin toss example. Sometimes studies are discounted that show elevated, but not statistically significant, risks.

One may ask how large the relative risk would have to be for the investigator to detect it -- or even if the association were true, what probability is there that this particular study design would have detected it. Often, negative studies have very low power. That means that the results might rule out a relative risk of 10 (an effect so large that it is rarely seen in environmental epidemiological studies), but nothing less. If the true relative risk were 5, it is unlikely that the result would have been viewed as statistically significant. Therefore, discounting a risk factor because a study does not show a statistically significant effect may be wrong. It may be that the effect is simply smaller than can be shown with the design used, but important nonetheless.

A good example of this phenomenon is the study of disease clusters. Investigators often ask whether a handful of cases demonstrates any pattern that is statistically unusual. Mostly, they do not. Studies of the statistical power of the most popular cluster detection methods, however, often show that unless the risks in the hypothetically affected area were enormous, the analysis would not have revealed a cluster. In fact, more sensitive methods often do reveal clusters. Therefore, one should be careful of dismissing a possible association on the basis of negative studies, unless those studies are designed to have high statistical power. 

Analytical Methods Used by Epidemiologists

Analytic methods vary by study design. We begin with the three best suited for cohort studies, in which epidemiologists compare study groups that are defined in terms of their exposure histories.

Rate Difference or Attributable Risk

The basic approach for identifying risk factors is to compare the frequency of disease among groups with and without the risk factor or exposure under consideration. Because groups vary in size, rather than use the number of cases of disease, epidemiologists estimate the proportion of each population that has the disease in question. To further standardize the comparison, we usually stipulate a period of observation, such as a year. The resulting number — new cases diagnosed per number of people being observed — is called the rate of disease. For example, let's say the rate of childhood leukemia in the United States is approximately 0.0001 per year, shorthand for one case per 10,000 children per year.

By subtracting the rate of disease in the population without the risk factor from the rate of disease in the exposed population, we get the rate difference, or attributable risk. We attribute this excess of disease to the risk factor we're studying. Let's say that in a small northeastern U.S. town where drinking water was contaminated, investigators identified 10 cases of leukemia in 2,000 children over a 10-year period of observation. That corresponds to a rate of five cases per 10,000 children per year.

Comparing the rate in this town to that estimated for the entire United States, we calculate that this town had an excess of four cases per 10,000 people per year (five cases in the town minus one case expected based on the national data, per 10,000 persons per year.) We attribute that excess to the contaminated drinking water.

Rate Ratio or Relative Risk

The attributable risk is useful because it tells us how many extra cases of disease we can expect in a specific population over the next year, given exposure to the risk factor of concern. It doesn't tell us how serious the risk is for those exposed relative to those who are not exposed. For that, we need to know the rates of disease among both populations; and since epidemiologists prefer to work with a single number index rather than a series of rates, we will make a ratio of the rates of disease in both groups to derive a disease rate ratio.

In the case of the small town with the contaminated drinking water, this rate ratio would be five divided by one, or 5.0. The rate ratio is sometimes called relative risk. In this example, children living in the small town were at a risk of developing leukemia that was five times greater than that of children in the United States as a whole. The rate ratio gives an index of how much worse off the exposed group is than the unexposed group. It is the most commonly reported result in epidemiology.

Population Attributable Risk

Another way of thinking about the effect of a risk factor is to determine what proportion of disease in a population would be prevented if the risk factor were removed from the entire population. For example, if we removed all the contaminated water in the small town, what proportion of childhood leukemia cases nationwide would be prevented?

This index is called the population attributable risk, that proportion of disease in the whole population that can be ascribed to the risk factor of concern. It is based both on the relative risk and the prevalence of the exposure in the whole population.

If we assume that one percent of all wells in the United States are contaminated like those in the small town, then the population attributable risk is an observed relative risk of five minus the expected relative risk of one, all divided by the observed relative risk of five and then all multiplied by the presence of the risk in the general populations, .01, or 0.8 percent. In our example, even though the relative risk (5.0) is fairly high (in environmental epidemiology, a relative risk greater than two or three is considered high), its effect on the entire U.S. population is fairly small, 0.8 percent of all expected leukemia cases. This is because in spite of the potency of the risk factor, relatively few children are exposed to it.

Imagine the converse situation, in which exposure confers only a small risk, but its commonness in the population is so great that it causes a substantial portion of disease. Let's assume suntanning confers a fairly small relative risk for skin cancer -- about 1.5 compared to those who don't tan. However, 50 percent of the population suntans, which makes the population attributable risk about 17 percent. In other words, removing the risk factor of sun exposure from the population would prevent 17 percent of all skin cancers, even though those who tan are only 1.5 times more likely to get such a cancer than those who don't.

In contrast, removing the contaminated water from all wells would prevent 0.8 percent of all childhood leukemia, even though those with the contaminated water are five times more likely to get the disease than those without. Because the population attributable risk puts the relative risk in the context of the whole population, it is generally a more useful index for assessing public health effect, whereas relative risk is useful for assessing the risk to an individual.

Surprisingly, the relative risk is reported routinely in epidemiological studies, while the population attributable risk is reported less frequently.

Odds Ratio

In case-control studies, we cannot estimate the rate of disease occurrence among study subjects because subjects are selected on the basis of having or not having the disease we're studying. Instead, we compare the rate of exposure among cases to the rate of exposure among controls. For statistical reasons, rather than compare rates, we compare odds, and call this the odds ratio.

To calculate the exposure odds ratio, we calculate the odds of exposure among cases and divide it by the odds of exposure among controls. The odds used in epidemiology are analogous to betting odds. If you have one chance in three of winning, we say your odds are one to two (written as 1:2). If four of five people meet your criteria, we say the odds of finding one such person is 4:1. Consider our study of contaminated drinking water again, but this time we'll imagine it as a case-controlled study. For our cases, those children with leukemia, we would evaluate the odds of having a contaminated well, and do the same for children without leukemia.

Perhaps six of the 10 children with leukemia had contaminated wells, for odds of 6:4. Three of the 10 children in our study without leukemia had contaminated wells, for odds of 3:7 The odds ratio would be 6:4 divided by 3:7, or 3.5, the odds ratio. The exposure odds ratio, it turns out, is always mathematically equal to the disease odds ratio, and both are statistical estimates of the relative risk. Interpreting odds ratio is the same as interpreting the relative risk.

