
3

Figure 1: sketch of a neuron.

Figure 2: a neuron with
particular values for inputs &
weights.

2. Neural Networks: Basic Concepts.

The basic element of a neural network (NN) is

a neuron, also referred to as a node (see figure 1).

Each node receives input signals via a series of n

connections, which we can label x1..xn. Each

connection has a weight associated with it, which we

can label w1..wn. The total weighted input seen by a

neuron is the sum of all xiwi. That is, each input signal is multiplied by the weight of the

connection it is transmitted on, and then the products of all these multiplications are added

together.

For example, in figure 2 we see a neuron with

inputs x1=4, x2=.2, x3=-7.3, and x4=-.35. Associated

with these inputs we have connections of w1=1.2,

w2=.-3.7, w3=-2.1, and w4=2.5. This being the case,

the neuron receives a total input of 4*(1.2) + .2*(-3.7)

+ (-7.3) *(-2.1) + (-3.5)*(2.5) = 10.64. This weighted

input is then fed into the neuron’s transfer function.

Various transfers functions are available to someone designing a NN, some of which are

presented in figure 3. Figure 3(A) shows a step transfer function, with threshold of 1.

Figure 3(B) shows another step transfer function, this time with a threshold of 2. Figure

3© shows a ramp transfer function, with maximum value of .75. Finally, figure 3(D)

shows a sigmoidal transfer function, which has an output of 0 for inputs smaller than 1,

4

Figure 3: examples of transfer functions.

Figure 4: truth table for
binary function and().

Figure 5: graphic
representation for and()
function.

starts increasing when its input reaches 1, and saturates to an output value of 1 when its

input reaches 2. With these and any other transfer function, the output of the transfer

function is placed on the neuron’s output connection.

Even though the two neurons I have used as examples here both have 4 inputs,

neurons in general can have any number of inputs.

As early as 1966, Papert and Minsky (1966) proved that a single neuron can solve very

few problems. In particular, they showed that a single layer network can learn to produce

correct outputs only when the input combinations are linearly separable. For example,

take the case of the binary

5

Figure 6: neuron that
generates outputs identical to
and() function.

Figure 7: graphic
representation of binary
function xor().

function and(), which has the truth table shown in figure 4. We can also represent this

function with a two-dimensional graph, each input

variable being displayed on a different axis (in general, a

function with n inputs could be represented in this way

using an n-dimensional graph). Figure 5 represents the

and() function using this method. In addition, figure 5

shows that we can find a line that divides the input space

where the function produces an output of 1 from the

input space where the function produces an output of 0. (In general, for a function with n

inputs, we would need to find an (n-1)dimensional plane dividing the input space.) The

fact that this line exists means that a neuron can

divide, or recognize, the input combinations that

need to produce a 1 from the input combinations

that need to produce a 0. For this simple case, we

can use a neuron with weights as indicated in figure

6, and a step transfer function with threshold of 2.

What Papert and Minsky showed was that

there were very simple functions that a single layer network cannot imitate. For example,

take the case of the binary function xor(). The xor() function produces an output of 1

when exactly one of its two input lines has a value of 1. No neuron can duplicate the

output of an xor() binary function, shown graphically in figure 7, since we cannot find a

single line that can divide the input space where the function produces an output of 1 from

6

Figure 8: xor NN correctly
processing input (1,1).

the input space where the function produces an output

of 0. This was a very influential conclusion, since xor()

is considered a fairly simple function. If a neuron could

not solve this problem, most functions would suffer the

same fate and be insoluble.

A solution to this problem is found once we

connect several neurons together, forming a multi-layer

network. Take, for example, the network shown in

figure 8. From a “black box” perspective, this network looks exactly like a single neuron

trying to solve the xor problem; it has two inputs and one output. Internally, though, it has

several neurons working together to solve the xor problem, which they manage to do.

Figure 8 illustrates the network while processing input (1,1). The bold numbers to the

right of a connection represent the connection’s weight, and the number in italics to the

left of the connection represents the signal present on that connection. St_1 represents a

step transfer function with threshold of 1, while st_2 represents a step transfer function

with threshold of 2. This network produces a correct output for all four possible input

combinations.

Therefore, by combining neurons to form a neural network, we have managed to come up

with a computation device more powerful than any one neuron. In fact, Siegelmann and

Sontag (1992) have shown that NN are Turing powerful. That is, anything that can be

computed by a digital computer can be computed by a correctly configured NN.

Although, as we have just seen, NN can compute a large class of functions, their

7

Figure 9: NN that fails to solve the
xor problem.

real power comes from the fact that, unlike other computing devices, no explicit

description of their behavior needs to be provided. Rather, NN can learn to approximate a

function by being presented with input-output pairs. The network is presented with an

input, and it propagates signals among its connections according to the weights and

transfer functions it has at the moment. Eventually we get a signal on the network’s output

connections. If this output is the same as the desired output for the input just presented,

then nothing is modified. On the other hand, if

the actual and the desired outputs are not the

same, then the network’s weights are modified

in such a way as to minimize the network’s

error. This process is repeated for a

predetermined number of epochs, or until a

predetermined error is achieved.

For example, lets say we want to, once

again, have a NN learn the behavior of the xor function. If the network we have is the one

shown in figure 9, then the correct output will be produced for three of the four possible

inputs. For input (1,1), though, the network will produce an incorrect output of 1. Notice

that this network differs from the one presented in figure 8 only by the value of one of its

weights (the weight with a value of -1 in figure 8 has a value of 1 in figure 9). Although

we could try to “fix this problem” by tinkering with the NN weights until we find a

combination that responds correctly to all input possibilities, this would be impractical

when dealing with large networks, and/or with larger input combinations. What we need is

8

Figure 10: NN with
recurrent connections.

an automated process by which the network’s weights can be modified so as to decrease

the error. One such method was developed by Rumelhart, Hinton, and Williams (1986).

The method is called the generalized delta rule, but is commonly known as standard

backpropagation, since it operates on the principle of letting the network compute an

output, calculating an error by comparing this output with the desired output, modifying

the weights directly connected to output nodes, and then communicating the error for

each output node back towards the input nodes, eventually computing weight

modifications for all nodes of the network.

The learning method outlined above can be used for any network that does not

contain feedback loops. It cannot be used with networks

where propagating an error signal from the output nodes

back to the input nodes would create an infinite loop. In

the network shown in figure 10, node a would propagate

its error to node d, node d to node c, node c to node b, and

node b back to a, creating a process that would never

finish. This type of network, though, is needed in order to

process time-dependent information. For example, we might be interested in training a

NN to recognize when two consecutive digits of a binary stream are the same. If the

stream were “1 0 1 0 0", we would like the network to output “0 0 0 0 1". Notice that the

NN needs to react differently to the first (or second) 0 than to the third 0 because of what

has happened in the input stream previously. The network needs, in effect, to store

information about past inputs. Only a network with feedback loops can achieve this type

9

of behavior.

In order to train this type of network, called a recurrent neural network (RNN),

extensions to the standard backpropagation algorithm such as Recurrent Backpropagation,

and Backpropagation Through Time (BPTT) have been devised that take into

consideration this type of connection. A good review of these and other learning

algorithms has been prepared by Pearlmutter (1990).

92

Bibliography

Antonisse, J., (1989) A New Interpretation of Schema Notation that Overturns the Binary
Encoding Constraint. Proceedings of the third International Conference on Genetic
Algorithms. San Mateo, California. Morgan Kaufmann, pp. 86-91.

de Garis, H., (1996) CAM-BRAIN: The Evolutionary Engineering of a Billion Neuron
Artificial Brain by 2001 Which Grows/Evolves at Electronic Speeds Inside a Cellular
Automata Machine (CAM), Lecture Notes in Computer Science – Towards Evolvable
Hardware, Vol. 1062, Springer Verlag, pp. 76-98,

de Lima, E. (1997) Assigning Grammatical Relations with a Back-off Model. To appear in
Proceedings of the Second Conference on Empirical Methods in Natural Language
Processing. Available for download at http://xxx.uni-augsburg.de/format/cmp-lg/9706001

Dow, R., Sietsma, J. (1991) Creating Artificial Neural Networks That Generalize. Neural
Networks, 4(1), pp. 67-79.

Elman, J. L., (1991) Distributed Representations, Simple Recurrent Networks, and
Grammatical Structure. Machine Learning, pp. 71-99

Frasconi, P., Gori, M., and Soda, G., (1992) Local feedback multilayered networks.
Neural Computation, 4(1), pp. 120-130.

Fullmer, B., Miikkulainen, R., (1991) Using marker-based genetic encoding of neural
networks to evolve finite-state behavior. Proceedings of the first European Conference on
Artificial Life. Paris, pp. 253-262.

Gasser, M., Lee, C., (1991) A Short-Term Memory Architecture for the Learning of
Morphophonemic Rules. Advances in Neural Information Processing Systems 3. Pp. 605-
611.

Goldberg, D., (1989) Sizing Populations for Serial and Parallel Genetic Algorithms.
Proceedings of the Third International Conference on Genetic Algorithms. Morgan
Kaufmann, pp. 70-79.

Hermjakov, U. (1997) Learning Parse and Translation Decisions from Examples with Rich
Context. Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, pp. 482-489.

Holland, J., (1975), Adaptation in Natural and Artificial Systems, Ann Arbor. University
of Michigan Press.

93

Jain, A., (1991) Parsing Complex Sentences with Structured Connectionist Networks.
Neural Computation, 3, pp. 110-120
Kitano, H., (1994) Designing Neural Networks using Genetic Algorithm with Graph
Generation System, Complex Systems, 4, pp. 461-476.

Langacker, R. (1985) Foundations of Cognitive Grammar, Vol. 1: Theoretical
Prerequisites. Stanford University Press.

Lawrence, S., Giles, C., and Sandiway, F. (1998) Natural Language Grammatical
Inference with Recurrent Neural Networks. Accepted for publication, IEEE Transactions
on Knowledge and Data Engineering.

Miikkulainen, R. (1996) Subsymbolic Case-Role Analysis of Sentences with Embedded
Clauses. Cognitive Science, Jan-Mar, Vol. 20 Number 1, pp. 43-73.

Munro, P., Cosic, C., and Tabasko, M. (1991) A network for encoding, decoding, and
translating locative prepositions. Connection Science 3, pp.225-240.

Narenda, K., Parthasarathy, K. Identification and control of dynamical systems using
neural networks. IEEE Transactions on Neural Networks, 1(1), pp. 4-27.

Negishi, M. (1994) Grammar Learning by a Self-Organizing Network. Advances in
Neural Information Processing Systems, Vol 5. MIT Press, pp. 27-34.

Nenov, V., Dyer, M. (1994) Perceptually Grounded Language Learning. Connection
Science, Vol. 6, No. 1, pp.3-41.

Papert, S., Minsky, M. (1966) Unrecognizable Sets of Numbers. Journal of the ACM 31,
2, April, pp. 281-286.

Pearlmutter, B. (1990) Dynamic Recurrent Neural Networks. Report CMU-CS-90-196,
Carnegie Mellon University.

Romaniuk, S. (1994) Applying crossover operators to automatic neural network
construction, Proceedings of the First IEEE Conference on Evolutionary Computation,
IEEE, New York, NY. pp. 750-752.

Rummelhart, D., Hinton, G.E., and Williams, R. (1986). Learning Internal Representations
by Error Propagation. Parallel and Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1,. MIT Press, pp.318-362.

Rummelhart, D.E. and McClelland, J.L. (1986) On Learning the Past Tenses of English
Verbs. Parallel Distributed Processing. Explorations in the Microstructure of Cognition:

94

Vol. 2, pp. 216-271, Cambridge, MA. MIT Press, pp. 216-271.

Schaffer, J., Caruana, R., Eshelman, L., and Das, R. (1989) A Study if Control Parameters
Affecting Online Performance of Genetic Algorithms for Function Optimization.
Proceedings of the third International Conference on Genetic Algorithms. San Mateo,
California. Morgan Kaufmann, pp. 51-60.

Siegelmann, H. And Sontag, E. (1992) On the Computational Power of Neural Nets.
Proceedings of the Fifth ACM Workshop on Computational Learning Theory, New York,
ACM, pp.440-449.

Skut, W., Brants, T., Krenn, B., et. al. (1998) A Linguistically Interpreted Corpus of
German Newspaper Text. Presented at the ESSLLI-98 Workshop on Recent Advances in
Corpus Annotation. Saarbrucken, Germany.

Smolensky, P., Mozer, M. (1989) Skeletonization: A Technique for Trimming the Fat
from a Network via Relevance Assessment. Advances in Neural Information Processing
Systems 1, Morgan Kaufmann, pp. 107-115.

Solla, S., Le Cun, Y., Denker, J (1990) Optimal Brain Damage. Advances in Neural
Information Processing Systems 2, Morgan Kaufmann, pp.598-605.

Stolcke, A. (1990) Learning Featured-based Semantics with Simple Recurrent Networks.
TR-90-015. International Computer Science Institute, Berkeley, CA.

Stork, D., Hassibi, B. (1993) Second order derivatives for network pruning: Optimal
Brain Surgeon. Advances in Neural Information Processing Systems 5, Morgan
Kaufmann, pp.164-171.

Tanese, R. (1989) Distributed Genetic Algorithms. Proceedings of the third International
Conference on Genetic Algorithms. San Mateo, California. Morgan Kaufmann, pp. 434-
439.

Weiss, S., Kulikowski, C. (1991) Computer Systems that Learn. Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems.
Morgan Kaufmann. San Mateo, California.

Whitley, D., Starkweather, T., and Bogart, C. (1990) Genetic algorithm and neural
networks: optimizing connections and connectivity. Parallel Computing 14, pp.347-361.

Wilson, W. (1993) A Comparison of Architectural Alternatives for Recurrent Networks.
Proceedings of the Fourth Australian Conference on Neural Networks, Melbourne,
Australia, pp. 9-19.

