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Abstract- This paper presentsthe results of using the
GENDALC GANN system to evolve neural network
topologiesfor music perception. The results obtained
are not only better than thosefor other typically used
neural network topologies, but also better than for
neural networks that incorporate music theory
knowledge. Becausethe data and task used in these
experiments include hierarchical time dependent
processing, these results demonstrate GENDALC's
ability to evolve good solutions for cognitive tasks,
even while using approaches potentially different
from those used by humans. 

1 Introduction

The GENDALC (Genetic Evolution of Neuron
Distribution and Layer Connectivity) system has proved
successful in evolving neural networks (NN) capable of
processing natural languages (Dávila 1999). Of particular
interest is that, while GENDALC has no built-in
grammatic knowledge, it is still able to find topologies
that efficiently take advantage of the grammatic
regularities found in the data set used for training. 

This paper presents results of using the GENDALC
system to evolve NN topologies for music processing. In
particular, networks are asked to classify musical
compositions as being written in minor or major key.
Results are compared with those obtained by several
typically used NN topologies, as well as by NN that have
been hardwired with knowledge of music theory. 

In the next section I will give an overview of work
done by others in order to provide NN with music theory
knowledge. I will later present the method used by the
GENDALC system to evolve NN topologies and the
parameters used in experiments with music processing. I
then present the results obtained by the GENDALC
system, and compare them to the results obtained by
other systems. Finally, I will discuss implications of these
results, and propose future research avenues. 

2 Basic Neural Network Theory

A neural network (NN) is a computational device loosely
based on the human brain. Simple processing units called
neurons (also referred to as nodes) are connected among
themselves. Each node receives input signals via a series
of connections, coming from either other nodes or the

outside world. Each connection has a weight associated
with it. Figure 1 illustrates a typical neuron, with
connection weights of 1.2, -3.7, -2.1 and 2.5. If signal
values of 4, -2, -7.3, and -3.5 are placed on the inputs to
this node, as illustrated, the total weighted sum seen by
the neuron is of 4*(1.2) + 2*(-3.7) + (-7.3) *(-2.1) + (-
.35)*(2.5) = 11.855. 

The total weighted input seen by a neuron is fed into a
transfer function, and the output of this transfer function
is placed on the output of the neuron. Figure 2 illustrates
typically used transfer functions.

The computation performed by any one neuron is very
simple, but complex behavior emerges when neurons are
connected to each other, forming a network. Instead of
having to explicitly program them with a particular data
processing algorithm, neural networks have the ability to
learn from the data presented to them. Learning in a
neural network takes place by the modification of the
connection weights between nodes. Backpropagation, the
most commonly used method for supervised learning,

Figure 1: Standard neuron, with sample
connection weights

Figure 2: typical transfer functions



modifies weightsas to minimize the differencebetween
the intended and actual activation of output nodes
(Rummelhart, Hinton, & Williams 1986).

3 NN and Music Processing

Previousresearchon NN-basedmusicprocessingcanbe
divided into two broadcategories.Onepresentsmusical
data to self-organizingmaps, in order to observewhat
type of configurationemerges.The other approachis to
hardwire neurons to each other in order to encode western
musical theory.

As an exampleof the former category,Taylor and
Greenhough(1994) presentedan ART neural network
(Carpenter& Grossberg1987a)with soundsfrom several
different instruments,causingthe NN to learnto classify
the sound sources. Griffith (1994) used ART2
classifiers(Carpenter & Grossberg 1987b) to detect salient
characteristics in nursery rhymes. 

One of the most complete examples of NN
incorporatingknowledgeof musictheory is proposedby
Tillmann, Bharucha,andBigand(Tillmann, Bharucha,&
Bigand 2001). They presenteda NN with units divided
into four layersof twelve units each,representingtones,
major chords,minor chords,or keys in westernmusic.
Connections among these four layers were set in
accordancewith elementsof one layer being presentin
elementsof the next one. So, for example, the node
representingthe C major chord was connectedto units
representingthe C, E, andG tones(all of which arepart
of theC major chord).This sameC majorchordunit was
connectedto the C, F, and G key units. Following this
pattern,all 48 nodeswere connectedin both directions,
forming a toroid. During activation, the unit for a
particular key would becomemore easily activated if
chordsand tonesthat participatein that samekey were
not only currently active, but had been active in the recent
past.Additionally, chordunits hadtheir activationdecay
exponentiallythroughtime. This systemwasintendedto
providea modelof how musicalcontextcould influence
processing of future tones, defining a hierarchical
relationship through time between notes, chords, and
keys. In human brain imaging experiments,the model
proposedby Tillmann, Bharucha,and Bigand hasbeen
foundto havecertainsimilaritieswith the waysin which
humanbrainsseemto be processingmusic input (Janata
et.al. 2002).

Becausethe model usedby Tillmann, Bharucha,and
Bigand incorporatesa high degree of western music
theory, it is the one againstwhich I will most closely
compare the topologies evolved by the GENDALC
system.

4 The GENDALC system

The GENDALC (Genetic Evolution of Neuron
DistributionandLayerConnectivity)systemhasno built-
in knowledgeof music theory. Instead,it generatesNN

with topologies completely determined by values of
evolved genomes.The GENDALC system determines
NN topologiesby distributing75 hiddennodesamong30
hidden layers, and then determininghow thesehidden
layersare connectedto eachother (Dávila, 1999). Each
topology in the GENDALC systemis configured by a
genomein a geneticalgorithm population.The genome
has30 genesusedto codethe "relativeworth" of eachof
the hidden layers. The 75 available hidden nodesare
distributedamongthesehiddenlayersaccordingto each
layer's worth relative to the sum of all worth values.

Figure3 outlinesthis process,although(solely for the
sakeof simplicity) with a smallernumberof nodesand
layers. In this case, the genomeis dividing 16 nodes
among6 layers. If the six relative worth geneshad the
valuesshownin the top box of figure 3, the total sumof
worths would be 2.6. Dividing the 16 available nodes
with theabovealgorithmwould assign1 nodeto layer1,
6 nodesto layer two, four nodesto layer 3, andso forth,
as illustrated in the lower box of figure 3. 

Figure 3: division of nodes into layers

To determinewhereeachhiddenlayer takesits input
from, we useanotherset of 30 genesas "takes-its-input
from" genes.The floating point numbersstoredin these
genesare multiplied by 32 and roundedto the nearest
integer.The resultingnumberpoints to which layer this
onetakesits input from. We multiply by 32 to allow for
hiddenlayerstakingtheir input from anyof the30hidden
layers,aswell as either the input or the output layer. A
valueof 0 meansthe layer takesits input from the input
layer.A valueof 32 meansthe layer takesits input from
theoutput layer. For valuesbetween2 and31, the layer
would take its input from the layer with the (N+1)th
highest relative worth.

Whereeachlayersendsits outputto is determinedin a
similar way, usinganothersetof 30 genes.Eachof these
genesstoresa floating point value between0 and 1. To
determinewhereeachlayersendsits outputto its "sends-
output-to"genevalueis multiplied by 31 androundedto
thenearestinteger.The resultingnumberpointsto which



other layer this one will send its output to. We multiply
by 31 to allow for hidden layers sending their output to
any of the 30 hidden layers, as well as to the output layer.
A value of 31 means the layer sends its output to the
output layer. For values between 1 and 30, the layer sends
its output to the layer with the Nth highest relative worth.
No layer sends its output back to the input layer.

5 The Task: Determining Key in Musical
Compositions

Neural networks in this experiment received pieces of
musical compositions in intervals of 1/8 of a note. Each
piece was represented by a vector of 12 values, where
one of these 12 values was set to 1 and the rest to 0.
Which of the 12 values was set to 1 was determined
based on the commonly used 12 tone representation of
pitch. NN were then supposed to indicate if the
composition being presented was written in major or
minor key. NN outputs below 0.5 were interpreted as an
indication of minor key, and outputs of 0.5 or above were
interpreted as an indication of major key. Networks were
trained with six compositions: Eine Kleine Nachtmusik,
Amazing Grace, Auld Lang Syne, Scarborough Fair,
House of the Rising Sun, and The Battle of Jericho. They
were then tested on a set of 19 songs, which included the
six previously listed, and then added Alouette, Battle
Hymn of the Republic, Carmen, Daisy Daisy, Danny Boy,
El Condor Pasa, Hava Nagila, Little Brown Jug, Swan
Lake, The New World Symphony, The Wedding March,
and When Johnny Comes Home. In terms of numbers of
patterns, the six songs used for training constituted only
20% of the patterns used for testing. Because the fitness
of any one NN was the number of notes incorrectly
classified across all patterns in the testing set, networks
that simply memorized the patterns present in the training
set would tend to have poor fitness values. That is, in
order to perform well with the testing set, networks
would need to detect general musical patterns in the
training set, which it could then properly apply to a
broader set of compositions.

6 Experimental Parameters

Genetic populations were initialized with 192 random
elements. The population size was kept constant, and
elements were paired with equal probability across the
population. Once paired, elements were combined by
using two random crossover points. Both offspring were
evaluated, and their fitness compared with that of all the
population. At any point, the best 192 individuals seen
during a run were part of the population. A mutation rate
of .009 was used on all runs. Runs were repeated 48
times, each time using a different random seed. Values
reported here are the averages of these 48 runs.

During their training phase, each NN was presented
with the training set for 500 epochs. Weights were
adjusted using the backpropagation through time

algorithm, which is a generalization of the
backpropagation algorithm that allows for feedback
loops. For the purposes of evolution, the fitness of a
particular NN was determined by counting how many of
the input patterns (a total of 2345 12-tone vectors) were
incorrectly classified (i.e. a low fitness value was
considered better than a high one). All nodes in the input
and output layers used identity transfer functions. All
hidden nodes used quickly saturating logistic functions
similar to the one shown in figure 2-c-. After evolution,
and in order to verify consistent performance, NN were
cross-validated 48 times (Weiss and Kulikowski, 1991).
Values reported in this paper are the average of these 48
runs. 

7 Results

7.1 Leaky Units
Experiments were repeated under several input
configurations, in order to test the potential advantage of
leaky integrator nodes (LIN) (DeVries and Principe,
1992; Elman, 1990; Poddar and Unnikrishnan, 1991).
LIN partially preserve the activation they had in previous
time steps. When used at the input layer, they provide
information of input vectors seen in the recent past. This
could potentially benefit NN performance by providing
some context for the notes currently being presented. In
the experiments reported in this paper, the output of LIN
is given by

where O(t) is the output of the node at time t, A(t) is the
activation of the node as per the note played at time t, and
L is the number of time steps that it takes for a past
activation to decay to zero. Higher values of L cause the
node activation to decay more slowly, allowing the input
vectors to store more historical information. 

Table 1 presents the performance of the best network
in the genetic algorithm population after 140 generations.
As can be seen, not only are leaky integrator units
unnecessary for the task and the system outlined above,
they in fact cause performance degradation. Analysis of
network behavior while input patterns are presented
reveals the source for this surprising result. Hidden nodes
fail to develop the precision required to distinguish
differing but similar values at the input layer. Because of
this, they perform better when values at the input nodes
are either 1 or 0, but do less well when input nodes can
have values as close to each other as 0.5 and 0.667, as is
the case when the  time constant of input nodes is 6.



Table 1:  NN performance while using leaky integrating
neurons with different time constants.

L Incorrectly classified patterns
1 362 (15.44%)
2 414 (17.65%)
4 485 (20.68%)
6 538 (22.94%)

7.2 Evolved Topologies
Analysis of NN topologies evolved with L = 1 system
reveals that networks are generally divided into two
collaborating sections. One of these sections provides
paths of different lengths from the input layer to the
output layer. The other section connects a series of layers
in a complex mesh of short paths. Figure 4 shows the
general outline of these networks.

Figure 4: general outline for evolved topologies

Figure 5 shows details of the paths of different lengths
going from the input layer to the output layer. These
paths tend to be from 5 to 8 hidden layers long. 

Figure 5: paths of different length from input to
output

Figure 6 shows typical details of the section that forms a
mesh of short paths. Although these meshes tend to be
quite complex, they can be best described as follows:
layers fall into one of three levels, where the first level
receives inputs from the paths of different lengths, and

the third level sends outputs back to the paths of different
lengths. Some layers in the first level send their output to
layers in the second level; some layers in the first level
send their output to layers in the third level; and some
layers in the first level send their output to layers in both
of the following two levels. Layers in the third level are
sequentially connected among themselves.

Connections going from the path of different lengths
to the mesh of short paths originated at hidden layers one
or two levels after the input layer. Connections going
back from the mesh to the path of different lengths ended
up at hidden layers one or to levels before the output
layer. This is outlined in figure 6.

Figure 6: connection between paths of different
lengths and mesh of short paths

Surprisingly, the topologies evolved with higher
values of L had almost identical structure as those
discussed above. In particular, it is interesting to note
that, although the networks were similar at the genotype
level, they were being defined by rather different
genomes. This tends to indicate that these topological
characteristics are important enough as to guide/force the
evolutionary process into finding different ways of
arriving at them. 

7.3 Comparisons with other topologies
In order to have a better sense of the success of the
GENDALC system in the task discussed in this paper, the
same set of experiments were repeated, this time
presenting the same musical compositions to NN with
other commonly used topologies. Since the task presented
here is one that requires temporal processing (that is, the
output at any one time depends not only on the current
input, but also on previous ones), tests were performed
with four different types of recurrent networks: fully
connected networks, Elman networks (Elman 1991),
Frasconi-Gori-Soda networks (FGS) (Frasconi, Gori,
Soda 1992), and Narendra-Parthasarathy networks (N-P)
(Narendra, Parthasarathy 1990). Fully connected
networks have a single hidden layer (in this case with 75
nodes), where every node of the input layer is connected
to every node of the hidden layer, and every node of the
hidden layer is connected to every node of both the
hidden and output layers. Frasconi-Gori-Soda networks,
Elman networks, Narendra-Parthasarathy networks, and
Jordan networks are illustrated in figure 7a, 7b, 7c, and
7d, respectively. For purposes of simplicity, these



networks are illustrated here with 4 hidden nodes,as
opposedto with the 75 hiddennodesthat were actually
used.

As can be seenin table 2, the topology evolvedby the
GENDALC system outperform all of these other
recurrent topologies. 

Table 2:  NN performance for several recurrent topologies.

Topology Incorrectly classified
patterns

Evolved by
GENDALC 362 (15.44%)

FGS 720 (30.70%)
N-P 589 (25.12%)

Elman 717 (30.58%)
Fully Connected 624 (26.61%)

Jordan 578 (24.65%)

An additionalsetof comparisonrunswasperformed,this
time with topologies that included the 48-node toroid
usedby Tillmann, Bharucha,and Bigand (which I have
briefly discussedin section 2 of this paper). In these
topologies,the twelve nodeinput layerwasconnectedto
the nodesof the toroid representingnotes.Each of the
nodesof the toroid was thenconnectedto anothersetof
hidden nodes forming one of the recurrent topologies
presentedin this section. Therefore, each of the pre-
designedtopologies was now taking inputs from the
music-theory-inspiredtoroid, asopposedto directly from
the input layer. Tests with this type of topology were
performedwith both27 and75 hiddennodesin the 'non-
toroid' part of the networks,aswell aswith onenetwork
wherethe outputnodewasdirectly connectedto eachof
thenodesin thetoroid (in this paperthattopologywill be
referred to as 'pure toroid'). An outline of one such
network (in this case for a Jordan topology, with 27
additionalnodes)is shownin figure 8. The performance
of thesenetworksis shownin table 3. As was the case
with previous tests, the topologies evolved by the
GENDALC system outperform these pre-designed
recurrent topologies.

7.4 Analysis 
While the musicaltask approachedin theseexperiments
clearly requires time-dependent processing, exactly
which topologywould beoptimal for it is hardto predict
a priory. In fact, theGENDALC system'smainadvantage
is that it searchesfor good topologies outside any
particular pre-designedtopology. Some clues can be
extractedfrom theperformanceof networkswith specific
topologies. Form the performance of the NN consisting 

Table 3:  NN performance for several recurrent topologies with
music-theory inspired toroid.

Topology Incorrectly classified
patterns

Evolved by
GENDALC 362 (15.44%)

FGS-27 nodes 589 (25.09%)
FGS-75 nodes 443 (18.89%)
N-P - 25 nodes 749 (31.94%)
N-P - 75 nodes 459 (19.53%)
Elman-27 nodes 770 (32.84%)
Elman 75 nodes 867 (36.97%)
Fully connected -

27 nodes 586 (24.99%)

Fully connected -
75 nodes 586 (24.99%)

Jordan-27 nodes 884 (37.70%)
Jordan-75 nodes 587 (25.03%)

Pure toroid 865 (36.89%)

only of a toroid-like hidden layer, it is clear that, while
this topology managesto embed music knowledge,it
seemsto lack theability to storeandprocesslonger-term
input relations. Topologies lacking toroid-based
knowledgecanusetheir recurrentconnectionsto provide
time-dependentinformation,but for themostpartseemto
benefit (or at least not suffer much) from having a
manually-designed segment of their hidden layer
incorporatingmusicknowledge.Of course,for anyoneof
thesetopologies,how to combinemusicknowledgewith
time-responsive recurrent connections is an open
question. It is GENDALC's evolutionary processthat
allowsit to searchfor combinationsof theseto seemingly
importantaspects.Althoughfurtherstudyof thebehavior
of hiddennodesin the evolvedtopologiesis needed,the
paths of different lengths from input to output layers
seemsto provide enoughtime displacedinformation to
the output layer, while the meshof short pathscould be
mimicking enough toroid-basedmusic information to
assistwith the task. What is certain is that topologies
evolvedby the GENDALC systemoutperforma variety
of hand-designedtopologiesthat contain characteristics
favorableto the task. This showspromisenot only for
music-orientedtasks, but for a variety of hierarchical
time-dependenttasks.This is particularly true in light of
results obtained by the GENDALC system in natural
language processing tasks (Dávila, 1999).

Figure 7: FGS , Elman, N-P, and Jordan NN. 

Figure 8: sketch of Jordan network with toroid.



8 Future Research

While the resultsobtainedin theseexperimentsclearly
demonstratethat theGENDALC systemcansuccessfully
find configurationsfor theintendedtask,how theevolved
networksare solving their task is still an openquestion.
Potentialanswersto this questionmight beobtainedonce
we analyzeboth the final valuesfor connectionsbetween
nodes, as well as internal node activations during
processing. 

Additionally, I am currentlyworking on the evolution
of neuralnetworksfor music generation,as opposedto
musicclassification.The goal of theseexperimentsis to
evolvetopologiesthatallow a NN to betrainedwith Jazz
performancesfrom specificmusicians,andthenproduce
performancesfor different compositionssimilar to the
ones the musiciansthemselvesplayed. Becauseof the
inherent hierarchicalstructureof this task, the system
shouldnaturally progresstowardstopologiescapableof
capturing complex musical knowledge. 

9 Conclusions

This paper has presenteda brief introduction to the
GENDALC system for evolving neural network
topologies. Experiments carried out demonstratethe
system'sability to evolvetopologiesthatcansuccessfully
classify musical compositions based on key. This,
combined with results in natural languageprocessing
tasksreportedelsewhere,is relevantto thebroadereffort
to develop cognitive systems,since the task requires
hierarchical time dependent processing. 
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