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Abstract

GENETIC OPTIMIZATION OF NEURAL NETWORKS FOR THE TASK OF
NATURAL LANGUAGE PROCESSING

by

JAIME JESÚS DÁVILA

Adviser: Professor Virginia Teller

One approach used by researchers developing computer systems capable of

understanding natural language is that of training a neural network (NN) for the task. 

Because of the large number of parameters that can be controlled in a neural network

(such as topology, training data, transfer function, learning algorithm, and others),

researchers have used networks with different configurations to achieve success in various

natural language tasks.

A major unanswered question in NN research is how best to set a series of

configuration parameters so as to maximize the network's performance. Variables such as

the number and type of connections among neurons, data to be used during training, and

speed of learning can dramatically affect performance. Moreover the ways in which these

parameters interact and affect the network's behavior is not well understood.

In the research reported here, no particular NN configuration is chosen in advance.

Instead, genetic algorithms (GA) are used to search the configuration space for optimal

combinations. The GA system defines important aspects of network configurations:

topology (number of nodes and layers and connections among them), training set

composition, and learning parameters.
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Networks evolved by the GA system were successful in solving the natural

language task; the percent of correct output ranged from 80% to 97%. Network topology

was the most important factor in the successful configurations. Training set composition

also played a role, but transfer function and mutation rate were not significant factors.

The four main topologies discovered by the GA system were compared to four of

the most commonly used topologies in NN research and were found to be significantly

superior in their performance. The use of GA to optimize NN shows promise for all tasks

where an optimal configuration is not known, and at the same time helps identify required

NN characteristics given particular natural language properties.
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1. Introduction 

The field of Artificial Intelligence (AI) has captured a lot of attention, both from 

researchers and the general public. The goal of AI is to develop computing devices

capable of simulating human behavior. One of the human tasks attempted by the field is

that of processing natural languages.

One approach used by researchers trying to develop computer systems capable of

understanding natural language is that of training a neural network (NN) for the task. A

NN is a computational device loosely based on the human brain; simple processing units

called neurons are connected among themselves. The computation performed by any one

of these neurons is very simple, but complex behavior emerges when neurons are

connected to each other, forming a network.

A question presented by NN is that of how to best set a series of configuration

parameters so as to maximize the network’s performance. Variables such as speed of

learning, number and type of  interconnections among the neurons, and data to be used

during training can drastically affect performance. Although the way in which any one of

these parameters affects the network’s behavior is not completely independent of the

others, how these variables affect each other is not well understood. 

Genetic algorithms (GA) are another computational model based on naturally-

occurring phenomena. In this case, the computational device is based on the principle of

natural selection. Different possible solutions to a problem are randomly generated and

evaluated as to their ability to solve the problem. The most successful solutions are 

combined to generate newer ones, in the hope that by combining good solutions we can
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obtain better ones. The best candidates are kept, and the process is repeated. 

In my research, I have used GA in order to search for optimal configurations of

NN parameters. After repeating this GA selection process for a fixed amount of time, I

analyze those combinations that have survived from one generation to the next in order to

identify which configuration parameters, and which values for these parameters, are

relevant for a NN trying to solve a natural language task. 

The rest of this dissertation is organized as follows.

The next section presents an introduction to the field of neural networks, followed

by a review of the work of other researchers who have used NN to process language. This

will be followed by an introduction to genetic algorithms, as well as a section reviewing

how GA have been used to optimize NN in the past. This is followed by a definition of

which parameters of a neural network I have chosen to optimize, and how. Finally, I will

present results, showing how it is that the networks chosen by the genetic algorithm are

solving the task, and present possibilities for future work.
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Figure 1: sketch of a neuron.

Figure 2: a neuron with
particular values for inputs &
weights.

2. Neural Networks: Basic Concepts.

The basic element of a neural network (NN) is

a neuron, also referred to as a node (see figure 1).

Each node receives input signals via a series of n

connections, which we can label x1..xn. Each

connection has a weight associated with it, which we

can label w1..wn.  The total weighted input seen by a

neuron is the sum of all xiwi. That is, each input signal is multiplied by the weight of the

connection it is transmitted on, and then the products of all these multiplications are added

together. 

For example, in figure 2 we see a neuron with

inputs x1=4, x2=.2, x3=-7.3, and x4=-.35. Associated

with these inputs we have connections of w1=1.2,

w2=.-3.7, w3=-2.1, and w4=2.5. This being the case,

the neuron receives a total input of 4*(1.2) + .2*(-3.7)

+ (-7.3) *(-2.1) + (-3.5)*(2.5) = 10.64. This weighted

input is then fed into the neuron’s transfer function.

Various transfers functions are available to someone designing a NN, some of which are

presented in figure 3. Figure 3(A) shows a step transfer function, with threshold of 1.

Figure 3(B) shows another step transfer function, this time with a threshold of 2. Figure

3© shows a ramp transfer function, with maximum value of .75. Finally, figure 3(D)

shows a sigmoidal transfer function, which has an output of 0 for inputs smaller than 1,
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Figure 3: examples of transfer functions.

Figure 4: truth table for
binary function and().

Figure 5: graphic
representation for and()
function.

starts increasing when its input reaches 1, and saturates to an output value of 1 when its

input reaches 2. With these and any other transfer function, the output of the transfer

function is placed on the neuron’s output connection. 

Even though the two neurons I have used as examples here both have 4 inputs,

neurons in general can have any number of inputs.  

As early as 1966, Papert and Minsky (1966) proved that a single neuron can solve very

few problems. In particular, they showed that a single layer network can learn to produce

correct outputs only  when the input combinations are linearly separable. For example,

take the case of the binary
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Figure 6: neuron that
generates outputs identical to
and() function.

Figure 7: graphic
representation of binary
function xor().

function and(), which has the truth table shown in figure 4. We can also represent this

function with a two-dimensional graph, each input

variable being displayed on a different axis (in general, a

function with n inputs could be represented in this way

using an n-dimensional graph). Figure 5 represents the

and() function using this method. In addition, figure 5

shows that we can find a line that divides the input space

where the function produces an output of 1 from the

input space where the function produces an output of 0. (In general, for a function with n

inputs, we would need to find an (n-1)dimensional plane dividing the input space.) The

fact that this line exists means that a neuron can

divide, or recognize, the input combinations that

need to produce a 1 from the input combinations

that need to produce a 0. For this simple case, we

can use a neuron with weights as indicated in figure

6, and a step transfer function with threshold of 2.

What Papert and Minsky showed was that

there were very simple functions that a single layer network cannot imitate. For example,

take the case of the binary function xor(). The xor() function produces an output of 1

when exactly one of its two input lines has a value of 1. No neuron can duplicate the

output of  an xor() binary function, shown graphically in figure 7, since we cannot find a

single line that can divide the input space where the function produces an output of 1 from
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Figure 8: xor NN correctly
processing input (1,1).

the input space where the function produces an output

of 0. This was a very influential conclusion, since xor()

is considered a fairly simple function. If a neuron could

not solve this problem, most functions would suffer the

same fate and be insoluble.

A solution to this problem is found once we

connect several neurons together, forming a multi-layer

network. Take, for example, the network shown in

figure 8. From a “black box” perspective, this network looks exactly like a single neuron

trying to solve the xor problem; it has two inputs and one output. Internally, though, it has

several neurons working together to solve the xor problem, which they manage to do. 

Figure 8 illustrates the network while processing input (1,1). The bold numbers to the

right of a connection represent the connection’s weight, and the number in italics to the

left of the connection represents the signal present on that connection. St_1 represents a

step transfer function with threshold of 1, while st_2 represents a step transfer function

with threshold of 2.  This network produces a correct output for all four possible input

combinations. 

Therefore, by combining neurons to form a neural network, we have managed to come up

with a computation device more powerful than any one neuron. In fact, Siegelmann and

Sontag (1992) have shown that NN are Turing powerful. That is, anything that can be

computed by a digital computer can be computed by a correctly configured NN.

Although, as we have just seen, NN can compute a large class of functions, their
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Figure 9: NN that fails to solve the
xor problem.

real power comes from the fact that, unlike other computing devices, no explicit

description of their behavior needs to be provided. Rather, NN can learn to approximate a

function by being presented with input-output pairs. The network is presented with an

input, and it propagates signals among its connections according to the weights and

transfer functions it has at the moment. Eventually we get a signal on the network’s output

connections. If this output is the same as the desired output for the input just presented,

then nothing is modified. On the other hand, if

the actual and the desired outputs are not the

same, then the network’s weights are modified

in such a way as to minimize the network’s

error. This process is repeated for a

predetermined number of epochs, or until a

predetermined error is achieved.    

For example, lets say we want to, once

again, have a NN learn the behavior of the xor function. If the network we have is the one

shown in figure 9, then the correct output will be produced for three of the four possible

inputs. For input (1,1), though, the network will produce an incorrect output of 1. Notice

that this network differs from the one presented in figure 8 only by the value of one of its

weights (the weight with a value of -1 in figure 8 has a value of 1 in figure 9). Although

we could try to “fix this problem” by tinkering with the NN weights until we find a

combination that responds correctly to all input possibilities, this would be impractical

when dealing with large networks, and/or with larger input combinations. What we need is
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Figure 10: NN with
recurrent connections.

an automated process by which the network’s weights can be modified so as to decrease

the error. One such method was developed by Rumelhart, Hinton, and Williams (1986).

The method is called the generalized delta rule, but is commonly known as standard

backpropagation, since it operates on the principle of letting the network compute an

output, calculating an error by comparing this output with the desired output, modifying

the weights directly connected to output nodes, and then communicating the error for

each output node back towards the input nodes, eventually computing weight

modifications for all nodes of the network. 

The learning method outlined above can be used for any network that does not

contain feedback loops. It cannot be used with networks

where propagating an error signal from the output nodes

back to the input nodes would create an infinite loop. In

the network shown in figure 10, node a would propagate

its error to node d, node d to node c, node c to node b, and

node b back to a, creating a process that would never

finish. This type of network, though, is needed in order to

process time-dependent  information. For example, we might be interested in training a

NN to recognize when two consecutive digits of a binary stream are the same. If the

stream were “1 0 1 0 0", we would like the network to output “0 0 0 0 1". Notice that the

NN needs to react differently to the first (or second) 0 than to the third 0 because of what

has happened in the input stream previously. The network needs, in effect, to store

information about past inputs. Only a network with feedback loops can achieve this type
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of behavior. 

In order to train this type of network, called a recurrent neural network (RNN),

extensions to the standard backpropagation algorithm such as Recurrent Backpropagation,

and Backpropagation Through Time (BPTT) have been devised that take into

consideration this type of connection. A good review of these and other learning

algorithms has been prepared by Pearlmutter (1990). 



10

Figure 11: sketch of the network used by Rumelhart & McClelland

3. Neural Networks for Natural Language Processing 

In order to compare and contrast the different NN configuration options that exist,

this chapter presents a short review of how neural networks have been used in the past in

order to solve natural language tasks, and how these configuration options seem to affect

the networks’ performance.

Rumelhart and McClelland (1986) used a NN to generate verbs past tenses. The

input to the NN was the phonemes composing a verb in present tense. The output was the

phonemes composing the same verb, but in past tense. The verb vocabulary included both

regular and irregular verbs.

The network they used was hardwired to turn the input phonemes into the word’s

Wickelfeatures. These Wickelfeatures were then mapped into the Wickelfeatures of the

verb’s past tense. Finally, the network was hardwired to turn this second Wickelfeature

into the phonemes of the verb in past tense. The learning process for this network changed

only the weights transforming the word from the present tense Wickelfeatures into the

past tense Wickelfeatures. Transforming from phonemes to Wickelfeatures and from
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Figure 12: sketch of the network used by Gasser
& Lee (1991).

Wickelfeatures to phonemes was done by connections with weights that had been

predetermined and hardwired.

Pinker and Prince (1988) discussed some inadequacies of the linguistic

representation used by McClelland and Rumelhart. One of these inadequacies was the fact

that two different words can have the same phonetic representation (for example, break

and brake) even though their

corresponding past tenses are

different. 

To address this problem,

Gasser and Lee (1991) included

word semantics as part of the input

to their network, as shown in figure

12; in addition to the phonemes

constituting a word, the NN received a series of bits ascribing meaning to the word being

presented. This semantic pattern was held constant at the input as long as phonemes of the

word were being presented. The network was trained to produce the next phoneme and

the semantics of the word as output. Notice that the network they used had a hidden layer

with a recursive connection to itself. 

Once trained, the network was tested for its ability in both perception and

generation. For perception, a series of phonemes was presented as input, and the network

was evaluated in terms of the meaning generated at the output. For generation, a meaning

was held constant at the input, and the network was tested for its ability to generate the
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phonemes of the word with such a meaning. Their networks used between 16 and 20

hidden nodes, and managed to correctly produce the past tense of input verbs in 95.5% of

all training data. The networks, though, were not good at generalizing for verbs they had

not seen during training. 

Elman (1991) trained networks to receive a sentence, and then try to determine if

it belonged to the grammar they had been trained on. He also performed experiments

where the networks received a sequence of words, all part of the same sentence, and had

the task of predicting the next word of the sentence. In both cases the input to the

network was at the level of words, i.e. sentences were presented one word at a time.

Words were represented by orthogonal strings of binary bits. 

During these two tasks, the networks were able to effectively learn context-free

and context-sensitive grammars. The sentences used in these experiments fall into

categories that linguists believe cannot be understood without using abstract

representations. Elman reached the conclusion that a high-level analysis process was

taking place inside the network:

It is reasonable to believe that in order to handle agreement and argument

structure facts in the presence of relative clauses, the network would be

required to develop representations which reflected constituent structure,

argument structure, grammatical category, grammatical relations, and

number . (At the very least, this is the same sort of inference which is made

in the case of human language users, based on behavioral data.) Elman

(1991).

Elman also reported that the networks captured lexical category structures, but
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Figure 13: sketch of a SRN.

that the relevance to grammatical structure was

still not fully understood.

The network topology used by Elman,

shown in figure 13, has come to be known as

Simple Recurrent Networks, or SRN. In a SRN,

hidden nodes are divided into two separate sets,

each with half of all hidden nodes available. One of these sets takes its input from the input

nodes and sends its output to the output nodes. The other group of hidden nodes is used

to store network state information. It takes its input and sends its output to

the first set of hidden nodes, storing a copy of its last activation. By doing this, this second

group of hidden nodes provides the first group with historical data it can use during the

processing of sentences.  

As an extension to the idea of having a hidden layer storing network information,

Wilson (1993) experimented with different numbers of hidden layers for the problem of

having a NN predict the next letter in a word given an initial string of letters. For example,

the networks in figures 14 and 15 both have sixteen hidden nodes. In figure 14 they are

divided into two hidden layers, while in figure 15 they are divided into four. 
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Figure 14: NN with 2
hidden layers.

Figure 15: NN with 4
hidden layers.

In Wilson’s experiments, attention was paid to making comparisons between networks

with the same number of hidden nodes, and almost the same number of weights (ranging

from 1923 to 1931).  The results indicated that networks where hidden nodes were

divided into more layers performed better. Network behavior became erratic, however,

with the highest number of layers he used, which was seven . Therefore, even though

providing more levels is advantageous in some cases, there is a limit beyond which

performance deteriorates.

Stolcke (1990) used NN to map simple English language phrases to semantic

representations. The input to the network was a series of words describing the spatial

relationship between two geometrical shapes, presented one at a time, and a 22 bit

semantic description of the sentence being presented. This semantic pattern was held

active and constant for the duration of the entire sentence. The network was trained to

repeat the semantic pattern on its output. After training, the words of a sentence were

presented at the input, and the correct semantic pattern would appear at the output, little
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Figure 16: sketch of the network used by Stolcke to
process embedded sentences.

by little as the sentence progressed. For example, a sentence like the red circle below the

triangle touches the blue square would be entered. The output nodes would activate to

represent the nouns circle and square, and the relationship touches. The average

Hamming distance between the expected and the actual outputs was  .082 for the training

set, 0 for simple sentences, 1.07 for sentences with one adjective, and .94 for sentences

with two adjectives. Stolcke also found that he needed to use a different network topology

to effectively process embedded sentences. Notice that Stolke designed what type of

information to provide at the input layer in accordance with the opinion, voiced by

linguists such as Langacker (1985) and Pinker (1984), that semantical grounding provides

useful constraints on the process of syntax acquisition.

Munro, Cosic, and

Tabasko (1991) worked

with NN that translated

prepositions from English to

German. The input to the

network consisted of two

nouns, a locative

preposition, and a representation of the spatial relationship between the two nouns. The

output consisted of a copy of the preposition, and its semantics for the specific phrase it

was used in. The prepositions {in, at, on, under, above} were mapped into the spatial

relationships {over, at the edge of, embedded in, contains, within border of, touching,

near, far from, supports}.  The semantics of the preposition were grounded according to
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the nouns it was used with. For example, when preposition “on” was used in the phrase

“house on the lake” it would be mapped to “at the edge of”, while when it was

used in the phrase “skating on ice” it was mapped to “over.”

After using this method to train one network in English and one in German, the

two networks were connected together, and translation from one language to the other

was performed via the semantic representation associated with the preposition. The

combined networks obtained error rates of less than 0.5%, but no network managed to

respond correctly to all 137 sentences in the training set.

Nenov and Dyer (1994) developed a system where the learning of words was

“grounded” in visual input. A series of figures moved around a 2-dimensional space at the

same time that a particular input (word) node was activated. The task of the NN was to

create correct relationships between the moving figures and the words being activated.

Word categories included nouns (such as circle, triangle), adjectives (red, blue),

verbs (moves, bounce), and adverbs (fast, slow). Success in learning was measured by

looking at internal nodes being used to construct a “mental image” of the scene being

presented. The network was trained with individual words first. It learned nouns within

four to five cycles and verbs within 48 cycles. Once independent words were learned, they

were correctly processed as part of a sentence automatically. (That is, the network did not

require to be trained to correctly process the words when seen as part of a sentence).

Mappings from visual to internal states took 10 to 40% longer to be learned than verbal to

internal states.
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Figure 17: sketch of NN used by
Negishi.

Negishi (1994) trained a network to

detect if a sentence belonged to a grammar or

not by teaching the NN to behave  like a Shift-

Reduce parser. Sentences were entered one

word at a time. At any one point the network

would process two symbols stored in its

sequence stack memory and a lookahead word.

The lookahead word and the top stack symbol were sent to a right-production network, at

the same time that the first and second stack symbols were sent to a left-production

network. If the latter was judged to be more likely to form a phrase, the symbol pair

reduced to a new symbol, this new symbol was sent to the sequence stack memory, and

the two individual symbols were removed from the sequence stack memory. Otherwise the

lookahead symbol was added to the sequence stack memory. If the sentence being entered

was grammatically correct, the process outlined above would repeat until it reduced to the

S symbol.   

Jain (1991) experimented with a network that received the words of a sentence

one at a time and produced a representation of the sentence that included phrase structure,

clause structure, semantic role assignment, and inter-clause relationships. Words were

presented by activating each word’s associated word unit. This produced an activation

pattern in the group of nodes assigned the task of representing word meaning. These word

meanings were then grouped into contiguous phrase blocks by the Phrase Level. The

Clause Structure Level assembled phrase blocks into clauses. The Clause Role level
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Figure 18: general network topology used by Ajay Jain

labeled words according to roles and relationships in each clause, e.g. Agent, Action,

Patient. The Inter-clause Level represented the relationships between clauses, such as

“clause 2 is relative to the first phrase block of clause 1.” The general network topology

used by Jain to perform this task is shown in figure 18.

As an example of how this network performed its task, we take an input of

sentence “the dog who ate the snake was given a bone”. The Phrase Level would divide

these words into [The dog][who][ate][the snake][was  given][a bone]. The Clause

Structure Level would then define the clauses to be ‘[The dog][was given][a bone]’ and
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‘[who][ate][the snake]. The clause Role Level would indicate that [The dog] was the

recipient of verb phrase [was given], [a bone] was the patient of [was given], and [the

snake] was the patient of [ate]. Finally, the Inter-clause Level would indicate that [who

ate the snake] was a modifier of [the dog].

Phrase Level, Clause Role Level and Clause Structure and Inter-clause Level were

trained independent of one another. A single Phrase module was trained to process words

regardless of its position in a sentence, and then it was replicated 10 times. The same type

of training was used for Clause Role modules. This allowed the final network to process a

phrase regardless of where in the sentence it appeared.

The task in this experiments, as well as the format of the input and output layers

used, constitutes a foundation for the experiments I have performed (to be fully presented

later).

Miikkulainen (1996) trained a network to receive a sentence one word at a time,

and then assign roles to nouns and verbs in an agent-action-patient triple. For example, the

girl saw the boy got mapped into agent=girl, act=saw, patient=boy, represented as |girl

saw boy|. His network was divided into three subnetworks: a parsing network, a

segmenter network, and a stack network. The combination of these three networks was

able to divide input sentences in such a way as to allow it to correctly process sentences

with structures that had not been seen during training. Once divided, phrases were

assigned case-role representations. Each subnetwork was trained independently of the

others and with no knowledge of what the relationship between the system’s input and the

system’s output was (since none of the networks see both the outside inputs and outputs).
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The average unit error for the parser subnetwork was 0.019. Center embedding greatly

diminished the percentage of correctly remembered agents.

Because each subunit was trained independently of the others, Miikkulainen

mentioned that his system should be seen as a model for human performance rather than

learning. He also mentioned that “Other, more cognitively valid learning mechanisms may

be possible”, and suggested that such systems should be studied. 

We see, then, that researchers have used a variety of NN configurations to process

natural languages. These options vary from network topology to learning parameters and

training set composition. How to choose values for these parameters is still an open

question, especially when the effect these variables have on each other is not well

understood.

The question then becomes: How can we design a NN to learn some aspect of

language, when we have a large number of variables, and we do not fully understand how

these variables interact with each other? In the next section I present a short introduction

to the field of genetic algorithms (GA), which are particularly well suited to answer this

type of question.
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Figure 19: randomly
generated population, with
corresponding fitness
values.

 4. Introduction to Genetic Algorithms.

Genetic algorithms are inspired by the process of natural selection. We start with a

randomly selected population of elements, each of which represents a possible solution to

the problem being solved. Each of these elements, called a genome, is formed by a string

of values (called genes) that code the free variables in the experiment. The fitness of each

genome is determined by how well the solution it codes solves the problem at hand.

Once we know the fitness of each member of the population, the members are

combined with each other to form new solutions. These new solutions also get evaluated

based on their ability to solve the problem. From the original solutions combined with the

ones just created, a certain number of genomes are kept in the population, discarding the

ones with the lowest fitness. The process is continued for a specified number of

generations, until a particular fitness value is achieved, or until some other predetermined

stopping criterion (such as invariance of average fitness) is reached.

As an example, lets say we want to maximize the

function f(x) = 16-x, where x is an integer between 0 and

15. We could codify the value of x using a binary string

with four positions. Keeping a constant population of size

six, we could start with the random population shown in

figure 19. The first step in evaluating this population is to

generate the solution, or phenome, each of these genomes

is coding. In this case this is done by treating each genome

as a binary number, and then turning it into a decimal
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Figure 20: crossover point, and resulting offspring.Figure 21: example of a pairing.

number. Therefore, genome {1 0 0 1} codes phenome 9, genome {1 1 1 1} codes

phenome 15, and so forth. Fitness values for this population are shown in italics in figure

19.

Once the genomes of this initial population have been evaluated, they are

combined to form new genomes. The most commonly used way of combining genomes is

by pairing them and choosing a crossover point. This crossover point divides each genome

into a tail and a head. New genomes are generated by combining the head of one genome

with the tail of the other. Figure 20 shows a possible way of pairing the genomes of our

initial population. Figure 21 shows one of these pairs, the selected crossover point, and the

resulting offspring. After performing crossover, and with a low probability, one of the

positions in an offspring can be mutated. In the binary example we are using, mutation

would involve changing from 1 to 0 or from 0 to 1.
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Figure 22: example of 2-point crossover.

The fitness for these offspring is determined the same way it was for the initial

population. If the fitness for any one of them is better than that of the genome with the

lowest fitness of the initial population, then that genome is inserted into the population,

and the genome with the lowest fitness value is discarded. The process repeats for the new

population until the stopping criterion is met.

Although the algorithm

presented above is the most commonly

used one, researchers have

experimented with aspects of how to

perform the different steps. For

example, Schaffer, Caruana, Eshelman

and Das (1989) investigated the effect

of using multi-point crossovers. In

these, each genome is divided into m+1 pieces, where m is the number of crossover points

chosen. The offspring are created by taking pieces from alternating genomes. Figure 22

shows the same pair of genomes in figure 21, but using 2-point crossover instead of single

point crossover. Notice that the resulting offspring are different.

Of key importance in the mathematical analysis of genetic algorithms is the

concept of a schema (Holland, 1975). A schema is a template for a group of genomes

which defines similarities among these genomes. For example, genomes {1 0 0 0} and {0

0 1 1} can be grouped by the schema {* 0 * *}, where * represents the don’t-care symbol. 

In the example we have been using, f(x) has its maximum value when x = 0. In
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addition, the smaller the value of x, the higher the fitness of the corresponding genome.

Given the binary representation being used, schema {0 * * *} will have the highest

average fitness of any schema that uses a single fixed value, since any number with a 1 in

its most significative position will have a lower fitness than any number with a 0 in that

same position. At the same time, schema {0 0 * *} has a higher average fitness than

schema {0 * * *}, but covers only half as many genomes.

Decisions on a number of GA parameters are made based on how schemata are

affected. For example, Holland (1975) used schemata theory as a basis for determining

optimal population size, and found that the number of efficiently processed schemata was

proportional to the cube of the population size. This analysis is based on the principle of

minimal alphabets, which states that using binary encodings maximizes the percent of

schemata processed by each genome. Under this principle, each genome processes 2L

schemata, out of a maximum of (b+1)L, where b is the number of values a gene can take

and L is the length of the genotype. This principle has been challenged by researchers such

as Antonisse (1989), who claims that the number of schemata processed in a non-binary

genome is out of (2b-1)L out of  (2b-1)L possible schemata.

Genetic algorithms, then, work by processing schemata and combining them to try

to obtain optimal solutions. They do this while making no assumptions about the problem

being solved. GA merely evaluate genomes of a population given a determined fitness

function. There is nothing explicit about the way GA operate that defines which parameter

might be more relevant, or how the parameters interact among themselves. This becomes

very useful when designing complex systems. Borrowing from the NN realm, for example,
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Lawrence, Giles, and Sandiway (1998) report that NN parameters such as learning

function, learning rate, and training data composition are interdependent; changing the

learning rate might affect which type of training data is optimal for a task. At the same

time, how these parameters affect each other is not well understood. From the point of

view of a genetic algorithm trying to optimize NN configurations, particular values for

these variables constitute particular schemata.
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5. Genetic Algorithms in conjunction with Neural Networks.

This chapter presents some of the way in which genetic algorithms have been used

in the past in order to optimize neural networks. Particular attention is given to indicating

which parameters are being optimized, and what task was being solved with the NN.

Whitley, Starkweather, and Bogart (1990) used GA to optimize the weights of a

NN for tasks such as XOR, 4-2-4 encoding, and adder networks. Each weight in a

network was represented by eight bits in the genotype. These eight bits were interpreted

as a number in the range [-127 .. 127]. Experiments converged to networks that managed

to solve their tasks correctly in 90% of the cases.

Romaniuk (1994) used GA to choose training data for a network solving the N-

parity problem. Each possible training element was represented by a single binary bit in the

genotype. A 1 indicated that the element should be used for training, while a 0 indicated

that it should not be used. Networks started by having only one node between the input

and output layers. An additional node was added every time it was determined that the NN

could not learn the task with the number of nodes it had at the moment. The system

managed to find solutions for the 2-, 4-, 5-, and 6-parity problems with an average of 2, 4,

5.15, and 6.8 nodes, respectively. 

De Garis (1996) evolved NN by having a series of “growth commands” give

instructions on how to grow connections among nodes. Each node in the network

processed signals that told it how to extend its synapses. When two different synapses

reached each other, a new node was formed. The genetic algorithm was responsible for

evolving the sequence of growth commands that controlled how the network developed. 
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Figure 23: example of a genome, and the
NN it generates.

Fullmer and Miikkulainen (1991)

developed a GA coding system where

pieces of a genotype went unused, imitating

biological DNA processing. Only

information stored between a Start marker

and an End marker was used to generate

networks. The amount of correctly

configured Start-End markers defined how

many hidden nodes the network would

have. In addition, information between these Start-End markers defined how the nodes

were connected to each other. The meaning conveyed by each position in the used part of

the genome depended on its distance from its corresponding Start symbol. For example,

the genome shown in figure 23 would generate two nodes, one for string

“S,a,1,b,5,a,-2,E” and another for string “S,b,0,a,3,E”, which wraps around the

end of the genome. Node “a” had an initial activation of 1 (because of substring

“S,a,1”), is connected to node “b” with a weight of 5 (because of substring “b, 5”), and

to itself with a weight of -2 (because of substring “a, -2”). Node b had an initial

activation of 0 (because of substring “S,b,0”) and a connection to node a with a weight

of 3 (because of substring “a,3”). The network evolved by this process was used to

control a virtual creature’s movements in a square field, avoiding “bad” objects and

coming into contact with “good” objects. The GA continued to run until a network that

could solve the problem evolved. The number of generations needed until this network
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was found varied between 7 and 304 for objects that could be identified before hitting

them, and between 15 and 414 generations when recognizing the object required traveling

around it looking for a characteristic view.

Kitano (1994) used GA to evolve a sequence of graph generation rules, as

opposed to directly coding network topology. Each genome defined a sequence of rules

used to rewrite an element of the graph. When these rules were applied until only terminal

symbols remained, the graph defined a connectivity matrix which was then used to

configure a NN. For example, if we were developing a network with two nodes, a genome

might code rules [S ý AB][A ý 01][B ý 10]. When these three rules are applied we end

up with a 2*2 matrix than defines the connectivity between the two nodes in the network.

As we can see, GA have been successfully used to optimize different parameters of

neural network configurations. GA, then, are well-suited to look for optimal NN

configurations for a natural language task, given that it is not fully understood how the

different parameters affect each other, but evidence shows that the way in which these

parameters are configured can greatly affect performance.
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6. Genetic optimization of NN for natural language processing.

In the previous chapter we took a look at how other researchers have used GA to

optimize different aspects of neural network configurations. It is important to note,

though, that no one has yet used GA to optimize NN specifically for natural language

processing, and there is nothing to indicate that configurations that were optimal for one

task will be so for others. In addition, GA have been used to optimize either the

connectivity among neurons, or the data used for training, but not both simultaneously.

Finally, there has been little analysis of how the evolved NN solve their tasks. For these

reasons my research concentrates on optimizing NN for the particular purpose of solving a

NLP task. In this research, network topology and learning parameters are evolved

simultaneously. Once good solutions are found, the networks are analyzed in order to

identify how is it that they are solving the intended task. The task being solved by the

networks borrows elements from both Jain (1991) and Miikkulainen (1996) in that words

of a sentence need to be divided into phrases, and the relationships between these phrases

needs to be indicated. 

In the research I have performed, a network is asked to receive a sentence one

word at a time, and to incrementally build a description of the sentence in its output nodes.

For example, if the sentence “the boy ran in the park” is entered, the network should

respond by indicating that “the boy” is a noun phrase, and it acts as the agent of verb

“ran”. The network should also indicate that “in the park” is a prepositional phrase

modifying the verb “ran”.

Entering a word into the network amounts to activating a single node that
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Figure 24: part of input layer receiving input “boy”.

represents the given word at the input layer, and at the same time activating those

semantic nodes that reflect the meaning of the word being entered. For example, to enter

the word “john”, a node that represents that word is activated, as well as nodes that

indicate that the word being entered is a proper noun, singular, concrete, and human. In

addition, an ID node is set to a value that would allow the network to distinguish “john”

from other words that might have the same semantic identity, such as “mary”.

The language I use in my research is composed of ten nouns: boy, girl, john, mary,

horse, duck, car, boat, park, river. Available semantic nodes are: human, animal, or

mechanical (three mutually exclusive nodes); animate or inanimate (represented by one

node, active if the noun is animate); proper (active if true, inactive otherwise); and one ID

node.

For example, figure 24 shows part of the nodes in the input layer that would be

activated in order to enter the word “boy”; the individual node for “boy” is activated, as

well as semantic nodes representing “animate”, “human”, “concrete”. Each oval in the

figure represents a single node, and not all nodes of the input layer are shown in figure 24.

Verbs are entered into the network in a similar way; the node representing that
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Figure 25: part of input layer receiving input “runs”.

verb is activated, simultaneously with semantic nodes that convey the meaning of that

verb. Semantic nodes available for verbs are: present or past tense (two mutually exclusive

nodes), auxiliary verb, movement verb, sound producing verb, sound receiving verb, visual

receiving verb, and a verb ID node used to distinguish verbs that would be identical

otherwise (for example, ran and swam would be identical without this last node). In total,

there are twelve main verbs (saw, swam, swimming, ran, runs, running, is, was, raced,

floated, said, heard) and two auxiliary verbs (is, was). For example, figure 26 shows how

the verb runs is entered in the network; the individual node for “runs” is activated, as well

as semantic nodes representing “verb of movement”, and “present tense”. Not all nodes of

the input layer are shown in figure 25.

In addition to nouns and verbs, the language has three adjectives (“fast”,

“blue”, “red”), one article (“the”), one adverb (“fast”), and three prepositions

(“with”, “in”, “after” ). Each of these is entered in the network by activating an

individual node for the word, plus an additional node that indicates which type of word

(adjective, article, adverb, or preposition) is being entered. A complete list of the words in

the vocabulary can be found in Appendix A.
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Figure 26: grammar to be processed by the NN.

The sentences of the

language the networks have to

process can be described with the

grammar shown in figure 26. In

particular, this grammar can

generate sentences with multiple

prepositional phrases, as well as relative clauses. Of all the sentences that can be

generated by this language, which include right-branching sentences and relative clauses,

419 were randomly selected to form part of the test bed. This grammar subset includes

simple sentences (which contain one noun phrase and one verb phrase), medium sentences

(which contain two noun phrases and one verb phrase), and complex sentences (which

contain three noun phrases and either one or two verb phrases). A list of the 419 sentences

used is given in Appendix B.

After each word is entered, the NN is expected to produce a representation of

what it understands about the sentence up to that point. For example, after the network

sees “the boy” (entered one word at a time; first “the”, and then “boy”) it should

indicate that it has detected a noun phrase that uses an article, and that the noun of this

phrase is “boy”. “Boy” in this case is represented by activating output nodes that code

“human”, “animate”, “concrete”, and an additional ID node that distinguishes “boy”

from other words that otherwise would have identical semantics (such as “girl”).
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Figure 27: representation of noun phrase “the boy” at the output layer.

If the network, immediately after having been shown “the boy” at the input

layer, is shown “runs”, it should respond by indicating that it has detected a verb phrase

with “runs” as its verb. Indicating that the verb of this verb phrase is “runs” is done by

activating semantic nodes for “verb of movement”, and “present tense”. In addition,

a node ID is activated so that “runs” can be differentiated from other verbs that would

otherwise have identical semantics. At this point the network should also indicate that the

first noun phrase detected is the agent of the first verb phrase detected. This is done by

activating a “np1-agent-of-vp1" node in the output layer. Other possible relations

between phrases (each of which is represented by a separate node in the output layer) are

listed in Appendix C.   

In the manner described above, then, the network should continue to indicate its

understanding of the sentence being entered until an “end-of-sentence” marker is seen.

The fitness of a network is determined by computing the sum of squared errors for all

output nodes during the processing of all sentences in the language. 

The genetic algorithm is responsible for searching for NN configurations that can
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Figure 28: genes 1-31 for a sample genome.

be effective for the language task described above. Each possible network is described by

a genome in the GA population. Aspects of the NN that are controlled by these genomes

are described below.

Hidden Layers 

Each network has 75 hidden nodes between the input and output layers. These 75

nodes are divided into N hidden layers, where N is a number between 1 and 30. The exact

number of hidden layers is determined by the first gene of the corresponding genome. This

position stores a random floating point number, with a value between 0 and 1. To

determine how many hidden layers a network has, the value of this gene is multiplied by

30, and rounded to the next highest integer. If the result of this rounding up is 31, the

network uses 30 hidden layers.

The number of hidden nodes

in each of these hidden layers is also

determined by the network’s

corresponding genome. The genome

has 30 genes used to code the

“relative worth” of each of the possible hidden layers. Once the number of hidden layers is

determined to be N using the process described above, the N layers with the highest

relative worth are identified. The 75 available hidden nodes are distributed among each of

these N hidden layers according to each layer’s worth relative to the sum of all N worth

values. 

Take, for example, the partially illustrated genome in figure 28, here showing
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genes 1 through 31. The first gene, with a value of .23, is multiplied by 30, producing a

result of 6.9. This is rounded to 7 to determine that this network will have 7 hidden layers.

The relative worth for all 30 layers are represented here by genes 2 through 31. Among

these, the seven with highest worth value are layers 18, 14, 1, 21, 7, 20, and 27 (with

relative worth values of .99, .96, .91, .90, .84, .84, and .75). The addition of these relative

worths gives 5.27, which means that each of these seven layers will have 75*X/5.27

nodes, where X is each layer’s relative worth. Therefore, for this example layers 18, 14, 1,

21, 7, and 20 will have 13, 13, 11, 10, 10, 10, and 8 nodes, respectively.

Connectivity

The connections between these seven layers are also determined by the network’s

genome. For each of the thirty possible layers, there is a gene that indicates where the

layer takes its input from. Each of these genes stores a random floating point value

between 0 and 1. To determine where each hidden layer takes its input from, its “takes-its-

input from” gene value is multiplied by N+2 (where N is the number of hidden layers this

network will have, as determined by the procedure outlined previously), and rounded to

the nearest integer. The resulting number points to which layer this one takes its input

from. We multiply by N+2 to allow a hidden layer to take its input from any of the N

hidden layers, as well as either the input or the output layer. A value of 1 would mean the

layer takes its input from the input layer. A value of N+2 would mean the layer takes its

input form the output layer.  For values between 2 and N+1, the layer would take its input

from the layer with the (N-1)th highest relative worth.
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Figure 29: genes 32-61 for a sample genome.

For example, if the genome partially displayed in figure 28 had genes 32-61 as

shown in figure 29, we would look at the top seven layers once again. The “takes-its-input

from” genes for these seven layers are shown in bold in figure 29. To determine where

layer 18 takes its input from, we would multiply .39 times 9, and then round to the nearest

integer, obtaining 4. This would mean that layer 18 would take its input from the layer

with the third highest relative worth, in this case layer 21. We determine the input for the

other six layers in a similar way.    

Where each layer sends its output is determined in a similar way, using positions

62-91 of the genotype. Each of these genes stores a random floating point value between

0 and 1. To determine where each layer sends its output, its “sends-output-to” gene value

is multiplied by N+1 and rounded to the nearest integer. The resulting number points to

which other layer this one will send its output. We multiply by N+1 to allow for hidden

layers sending its output to any of the N hidden layers, as well as to the output layer. A

value of N+1 would mean the layer

sends its output to the output layer.

For values between 1 and N, the layer

sends its output to the layer with the

Nth highest relative worth. No layer

sends its output back to the input layer.

With input, hidden, and output layers having their connectivity determined as

described above, the maximum number of connections occur when all 75 hidden nodes are

part of a single hidden layer, and they have recursive connections to themselves. Such a
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Signum aj(t) = 1, if netj(t) > 0,
          -1 otherwise

Identity aj(t) = netj(t)

TanH aj(t) = tanh(netj(t) + èj)

StepFunc aj(t) = 1, if netj(t) > 0,
           0 otherwise

Product aj(t) = Ði wijxi

Logistic aj(t) = (1+e-(netj
(t) +ö j) ) 

-1

NoMoreThanZero aj(t) = 1, if netj(t)# 0,
          0 otherwise

Figure 30: transfer functions available to each node.

network has 17475 connections. Since, once initial parameters are determined, the only

way the behavior of a neural network can change is when its weights are modified,

knowledge about how to solve a problem has to be coded in the value of these weights. A

network with more weights, then, has more “repositories” for this information. At the

same time, being able to store too much information about the training set being presented

might lead to a network that memorizes the training set, as opposed to one that finds

salient properties in the data. This would lead to a network that is unable to generalize

past the training data. In effect, a lower number of connections forces the network to find

ways to generalize, which in turn produces better performance with data outside the

training set. For this reason, networks that use a high number of connections are penalized

by a factor equal to the percentage of connections they use relative to the maximum

number of connections (which is 17475). Therefore, the fitness of each network will be

multiplied by (17475 - C)/17475, where C is the total number of connections it has.

Transfer functions

The transfer function

used by each hidden node is

determined by 75 additional

genes, numbered 92-166.  The

available transfer functions,

shown in figure 30, are: sign

function, identity function,

tangential function, step
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function, product function (the output of the node takes its value from the product of all

weighted inputs), logistic function ( (1+e-(netj(t) +ö j))
-1 ), or no more than zero (the

output turns high if the sum of weighted inputs is non-positive).

To determine which of these seven transfer functions will be used for each node,

the value in the corresponding gene (which will be between 0 and 1) is multiplied by 7.

The result is then mapped into a transfer function as follows: A value between 0 and 1 will

mean the node uses the sign function. A value higher than 1 and up to 2 will mean the

node uses the identity function. A value higher than 2 and up to 3 will mean the node uses

the tangential function. A value higher than 3 and up to 4 will mean the node uses the step

function. A value higher than 4 and up to 5 will mean the node uses the product function.

A value higher than 5 and up to 6 will mean the node uses the logistic function. A value

higher than 6 will mean the node uses the “ no more than zero” function.

Because the learning algorithms used in this research (discussed in the next

section) require transfer functions to have derivatives, the derivatives of non-continuous

transfer functions are simulated with the derivatives of quickly-saturating logistic

functions. 

Learning algorithm

The learning algorithm to be used during training is also determined by a gene in

the genome. This gene stores a floating point value between 0 and 1. A value up to 0.33

causes the network to be trained using Quick Propagation Through Time (QPTT). A

value greater than 0.33 and smaller than 0.67 causes the network to be trained with Back

Propagation Through Time (BPTT). A value greater than 0.67 causes the network to be
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Figure 31: genes 167-169
for an example genome.

trained with Batch Back Propagation Through Time (BBPTT). All of these algorithms are

variations of Standard Back Propagation algorithm. QPTT and BBPTT update weights

after all patterns are presented, while BPTT updates them after each pattern is presented.

QPTT assumes that the error curve is quadratic, trying to jump directly to the bottom of

the parabola.

Training parameters. 

The GA also tries to optimize training parameters such as learning parameter (LP),

momentum (M), and weight decay (WD). Each of these variables obtains its value from a

particular gene in the network’s genotype. These genes have values between 0 and 1,

which get mapped into the options available for the corresponding variable; LP: 0 - 2;

Momentum: 1.25 - 1.75; weight decay: .00005 - .0005; backstep: 1 - 10 (The value for

backstep controls the number of steps back in time that the algorithm remembers when

computing weight changes).

 Training data

In addition to determining NN parameters as described above, the GA also

chooses the composition of the data used for training. All networks start with a training

set composed of 84 sentences, which is equal to 20% of the language. Which of the three

sentence complexity groups these sentences come from is determined in the following

way: genes 167, 168, and 169 represent the relative

worth for complexity groups one, two, and three,

respectively. Adding the values for these three genes,

we get a total worth value. The percent of sentences



40

selected from each group is then determined by dividing the relative worth of each group

by the total worth value. For example, imagine that a genome has genes 167-169 as shown

in figure 31. The total worth value in this case would be 1.48, which would make the

proportional worth for sentence group 1, group 2, and group 3 equal to .61, .11, and .28,

respectively. Multiplying by 84, this would make the number of sentences used from group

1, group 2, and group 3 equal to 51, 9, and 24, respectively.

The genomes also code information that can lead to an increase in training

sentences above the basic 20% discussed above. Three additional genes, numbers 170,

171, and 172, have random floating point values between 0 and 1. These values are the

percentage of sentences from groups 1, 2, and 3, respectively, that should be added to the

training set. For example, if a genome has values of .25, .47, and .32 in genes 170, 171,

and 172, respectively, then the corresponding network is trained with an additional 25%

percent of sentences from groups 1, 47% of sentences from group 2, and 32% of

sentences in group 3. Since there are 64 sentences in group 1, 184 sentences in group 2,

and 171 sentences in group 3, this translates into training with an additional 16 sentences

from group 1, 86 sentences from group 2, and 55 sentences from group 3. The fitness of

the network is then decreased by the same proportion as the increase in sentences. In this

example, since the network would be trained with 157 additional sentences, the effective

fitness of the network would be computed by taking the actual fitness and multiplying it by

(419-157)/419.

Finally, there is a gene in the network’s chromosome that determines how many

groups the training set is divided into. A random value between 0 and .25 means all
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sentences are presented to the network as part of a single training set (training mode 1). A

value between .26 and .5 means the network is first presented with sentences from groups

1 and 2. Then, once that training is done, the network is trained with sentences from

group 3 (training mode 2). A value between .51 and .75 means the network is first

presented with sentences from group 1. Then, once that training is done, the network is

trained with sentences from groups 2 and 3 (mode 3). A value between .76 and 1  means

the network is trained first with sentences from group 1, then with sentences from group

2, and finally with sentences from group 3 (mode 4). 
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7. Software configurations

The task described in the previous chapters turns out to be computationally

expensive. In order to estimate the time it would take to run experiments of this type, I

evaluated how long it would take a NN to be trained in a worst-case scenario. Because the

time it takes to train a network is dependent on the number of connections the network

has, the worst case-scenario occurs when the network has a single hidden layer with

recursive connections to itself. Training such a network for 5000 epochs with 20% of the

complete language can take up to six hours of computation on a Sun SparcStation. If the

chosen population size were, for example,  48 elements per population, evaluating a single

generation could take up to 6 days. Since the GA can decide to increase the size of the

training set, it is theoretically possible that networks end up being trained with the

complete language. In that case the time it takes to evaluate a single generation could

increase by a factor of five.

In order to decrease the time it takes to evaluate a generation, I have developed a

system that takes advantage of a network of 52 Sun Sparcstations. Instead of evaluating

the fitness of a single NN at a time, this system can have a network being evaluated on

each available CPU. By doing this, a single generation for a population with a size as big

as 52 can be evaluated in almost the same time it takes to evaluate a single NN.

The Genetic Algorithm process is performed with Genitor, a package developed by

Dr. Darrell Whitley at the University of Colorado, which I have modified to allow for

additional features. The most important change to the package enables it to take

advantage of the inherent parallelism in the way described above by performing all pairings
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and crossovers before starting to compute the fitness of any one offspring. (The original

package evaluated an offspring as soon as it was generated.) Some other changes are the

ability to choose to pair all members of the population for crossover (the original package

allows only for one pairing per generation), and the ability to choose if both offspring

resulting from a crossover fight for a position in the next generation (in the original

package, only one offspring - chosen randomly - would be evaluated to see if it should be

inserted into the population).

The NN aspect of the computation is carried out by the Stuttgart Neural Network

Simulator (SNNS) package. Once the modified Genitor package generates all offspring for

a generation, it creates all the files SNNS needs in order to train and evaluate a network.

This includes a file describing the connections among nodes of the network, a file

indicating NN parameters to be used, a file containing the training data, and a file

containing the data to be used for evaluating the performance of the NN. After generating

these files, the Genitor package looks for a CPU not currently evaluating a network,

copies the files to a directory designated for this CPU, and executes a client program for a

client/server system I have developed. This client/server system uses the Unix RPC

communication level protocols, and causes the server side to respond by calling SNNS in

batch mode. Once SNNS finishes training and evaluating the NN, it stores the total error

for the network in a predetermined file. When the Genitor package detects the presence of

this file, it reads the fitness value from it, and assigns it to the genome that was evaluated

on this particular CPU.

Since not all NN being evaluated have the same topology, and not all CPUs have
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the same load, some genomes will be evaluated faster than others. To take full advantage

of the network of available CPUs, the modified Genitor package will assign a genome to

any available CPU. When there are no genomes left to assign, the system assigns a

genome that has not finished being evaluated, even if it is currently being evaluated by

some other CPU. When a CPU finishes evaluating a genome, the other CPUs evaluating

this same genome are sent a signal to stop evaluating, and all of the CPUs are returned to

the pool of available CPUs.

By taking advantage of this network of Sun workstations as described above,

evaluating a single generation for a population of 48 elements takes, on average, less than

two hours.

Given the fact that the ideal population size is a multiple of how many processors

are available (Goldberg, 1989), I have chosen to use a population size of 48 individuals in

all experiments. That way, up to four processors can fail to respond to client-server

commands without degrading the performance of the system.

Since the genotype stores strings of floating point numbers, when a position in a

genome is selected for mutation, its value (called “allele” in GA terminology) is changed

to a random number between 0 and 1. Evolution of genomes was repeated with mutation

rates of 0%, 1%, and 10%. All members of a population were matted in order to produce

candidates for the next generation. That is, each genome was chosen for pairing once and

only once per generation. Many researchers choose to give a higher probability of mating

to genomes with higher fitness values. Initial experiments with the task I present here

indicated that using that approach would lead to very early convergence to a mediocre



45

value. This was probably due to the high difference in fitness value between a mediocre

configuration and configurations that completely failed to solve the task).

Experiments were repeated four times in each case, using different random number

generator seeds. Numbers reported are averages for all runs, except where noted. All

experiments were run using two-point crossover and were run until the average fitness of

the population changed less than 1% between two consecutive generations. 

All weights of a neural network are initialized to random values between -1 and 1.

In addition, updating the nodes’ activation value is done in serial order (i.e., first the node

labeled as node #1 is updated; then the node labeled as #2 is updated, until all nodes are

updated). Training samples were presented to the networks for 5000 epochs. For purposes

of the training algorithms, only errors with magnitude higher than 0.1 are backpropagated.

Because most output nodes are required to be inactive as a response to words

presented at the input layer, a network could learn to perform at better than 50%

efficiency by simply keeping all of its outputs at 0 all the time. In order to force networks

into learning how to efficiently deal with the language problem presented, the default

activation value for output nodes was set at 1. This would cause a network that does not

respond to inputs to have fitness value of less than 18%. 

In order to verify consistent performance, all evolved networks were validated by

performing bootstrap validation (Weiss, Kulikowski 1991).  In bootstrap validation, a

particular size for the training set is determined, in this case using the training composition

described in the corresponding genome. Then the network is trained with a training set of

the same size chosen randomly, and tested on all data not used for training. This process
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was repeated 144 times for each network.



47

8. Results

After letting the GA run in the way defined in the previous chapter, it typically

converges after 40 to 49 generations. Even though the number of generations differed

from experiment to experiment, the final population always contained the same topology

types in all cases. In this chapter I describe the characteristics of the four topology types

present in these last populations, present the details about their performance, and discuss

how each of them solved the intended task. These four topologies are compared to four

other topologies commonly used in NN experiments. 

Network performance was checked after each word was entered. For example,

with the sentence “the boy runs”, output values were checked immediately after

entering the  word “the”. At this point the network needed to start building a

representation for the first noun phrase, indicating that it used a determiner. Other

characteristics should have remained unspecified at this point. When the word “boy” was

entered, the networks needed to indicate that the first noun phrase used a determiner and

had a noun with properties {human, concrete, animate}. Other characteristics, such as 

mechanical and abstract, should have remained inactive. (Given that all output nodes

used a Step function as their transfer function, the output of each of them was either a 0 or

a 1). The percentages presented in this chapter refer to the number of output nodes

activated (or kept inactive, if the related property was not present) for each word, summed

over all sentences of the language.

In order to analyze how these four topologies are performing their task, I studied

the activation pattern of hidden nodes as each word was presented to the network.
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Analysis started with very simple sentences (i.e. “john ran”, “mary ran”), used to

detect how the hidden layers reacted to nouns. In order to detect reactions to verbs, the

networks were presented with sentences that used the same nouns as seen before, but with

different verbs (i.e. “john swam”). I continued the process by presenting sentences with

transitive verbs (i.e. “john saw the horse”), which helped me to detect differences in

the way hidden nodes reacted to different types of verbs and well as sentences with

different structures. Finally, longer sentences were presented in order to test the networks

while processing more complicated sentence structures (i.e. “mary saw that the duck

was swimming in the river”, “the boy that ran after the girl ran after

the horse”). Visualization of hidden node activations during this process was done with

SNNS’s graphical user interface, which allows for displaying nodes while pattern files are

presented one pattern at a time. A small sequence of screen captures for this process while

analyzing topology type I is presented in Appendix F.

Because node activations are updated in serial order, the labeling of hidden layers

used in this chapter is based on the order in which layers are updated, as opposed to based

on their proximity to the input layer. 

8.1 Evolved topologies

All topologies present in the final population were tested for consistency with the

bootstrap validation process described in the previous chapter. Performance values

presented in this chapter refer to the performance of these four topology types when

evaluated for consistency, unless otherwise stated.

The percentages of correct output values generated by the members of final
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Topology Fitness
seen by GA

% of
population

Validation
Ave.

Validation
Best

Validation 
Worst

Type I 89.12 16 90.21 92.09 88.97

Type II 88.93 50 95.99 97.62 84.91

Type III 87.59 17 87.59 88.84 86.20

Type IV 81.65 17 82.69 85.97 80.39

Figure 32: performance statistics for evolved topologies. 

Figure 33: type I topology.

populations ranged from 80.39% to 97.62%. The best average performance is for

topology type 2, but it also has the highest sensitivity to initial connection weights and

training sentences. The lowest average performance for the four topologies was 85.97%.

The lowest performance for any of the four topologies, under any initial set of conditions,

was 80.39%.

8.1.1 Type 1 topology

Of all the topologies evolved by the GA

system, the one with the highest average fitness

(89.12% of the language processed correctly) is

displayed in figure 33. Of all networks present in

the last generation, 16.66% were of this type. In

144 bootstrap validation runs performed with this topology, the average fitness was

90.21% of the patterns processed correctly, with the worst run correctly processing

88.97% and the best run correctly processing 92.09%. This topology uses 43 of the 75
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Figure 34: third layer in Type I
topology.

hidden nodes available, and has a total of 2100

connections (of the possible 17475) .

During processing of sentences, the hidden

layer that receives its input from the input layer displays

activation patterns that distinguish

the part of speech just presented. For example, when

sentence “john ran” is presented, the five nodes in

this layer activate to binary pattern 01010 when “john” is presented at the input, and then

changes to pattern 11010 when “ran” is presented. Other parts of speech identified by this

layer are articles (“the”, 00111), and conjunctions. This layer lacks the ability to

distinguish similar nouns or verbs. That is, it responds the same way to “john ran” as to

“mary ran”. It also reacts identically to “john ran” as to “john swam”. Given the fact

that this is the only layer directly connected to the input layer, the rest of the network

receives information about what type of token has been seen (noun, verb) but not about

which object within a particular token class it was. This fact is later reflected in the output

layer, where the network produces identical outputs for sentences following similar

syntactic patterns.

Although this layer ends up losing some information regarding the characteristics

of the word just entered, it does manage to distinguish between words that fall into the

same part of speech class, but that have a different effect on how the syntax for the rest of

the sentence is supposed to progress. For example, although this layer reacts the same way

to “ran” and “swam” (11010) it has a different response after the word “saw” is presented
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1 Although prepositions and articles are separate categories at the input layer, this
particular hidden layer reacts the same to both categories.

Figure 35: first hidden layer
in type I topology.

(11100). Distinguishing between these two types of verbs is important, since one of them

has a complement and the other does not.

Other important information detected by this layer is when a noun occupies the

role of agent or complement. For example, when “john” is shown after “mary saw”, this

layer responds by activating 11110, but when it sees “john” as the first word of a sentence

it responds with 01010. This difference is not caused solely by several words already

having been entered, since it indicates “agent” (01010) after seeing “mary saw that

john...”. As we will see later in this section, other hidden layers provide this one with

information regarding where in the syntax of a sentence the system is currently. Finally,

this layer also differentiates between nouns with highly distinguishable semantic properties.

For example, it manages to differentiate between “john” and “park”.

The first hidden layer, which has 15 nodes,

performs two separate but related tasks. First, it sends

the information it receives from layer 1 forward, so that

it is available to the rest of the network one time step

later than if it had come directly from the first hidden

layer. Second, it classifies the information provided by

layer 1 into an element of the set {noun, transitive verb,

intransitive verb, preposition-article1}. For example, the

first 10 nodes of this layer show the same property as layer 1 (activating into patterns that
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mary 0100100011 john

saw 0100100110 said

that 0100100011 that

the 0100100011 the

boy 0100100011 girl

ran 0100100011 swam

in 0110100011 in

the 0101100011 the

park 0100001011 river

Figure 36: example of activations in type
I topologies, hidden layer #2.

distinguish parts of speech), while the last 5 nodes activate as 11000 when mary, john,

boy, park, or any other noun is presented at the input layer. It does this regardless of

where in a sentence the system currently is, thus generalizing the information provided by

layer 1. This layer continues to make distinctions between transitive and intransitive verbs

(for example, between “ran” and “saw”).

The second hidden layer of this topology

learns to keep track of what type of syntax the

current sentence has, and at the same time

indicates at which point in the current sentence

the network is. For example, consider the

sentences “mary saw that the boy ran in

the park” and “john saw that the girl

swam in the river”. Although  the words in

these two sentences are not the same, they fall

into the same categories.  The sentences have the

same structure, and this hidden layer responds identically to each of the words in the

sentences, as shown in figure 36. When a sentence with different syntax is presented, this

layer responds with different activations.   

This layer manages to keep track of a sentence’s syntax by combining the two

pieces of information provided by the first hidden layer. For example, if the first layer

indicates that a transitive verb was just presented, and the next word is “that”, the third

hidden layer falls into a pattern that indicates that the next noun to be presented should be
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Figure 37: fourth and fifth
hidden layers in topology type I.

treated as an agent. On the other hand, if the first layer indicates that a transitive verb was

just presented, and the next word is a noun, then that noun is treated as a complement of

the verb.

The output of the second hidden layer feeds back to the third hidden layer. It is the

combination of receiving information from the input layer and the second hidden layer that

allows the third layer to distinguish and respond differently to a noun when it is being used

as an agent or as a complement. The input layer provides information about the word

being entered, and the second hidden layer provides information about the structure of the

sentence being presented and where in the sentence the network currently is.

Hidden layer number five combines the information provided by layers two and

three, and sends it to the output layer. At the same time, it sends it to hidden layer number

four. In this way, the output layer gets information regarding several timesteps of hidden

layers activations. 

This network topology demonstrated some

sensitivity to the learning function used during

training. In particular, Batch Propagation Through

Time (BPTT) was able to correctly train this type of

network when a high value for backstep was also

used. The value for backstep controls the number of

steps back in time that the algorithm remembers

when computing weight changes. The average value

for backstep for this learning algorithm was 6, while for other learning algorithms it was 3,
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Figure 38: type 2 topology.

and some were successful in training a network with values of back step as low as 1,

which never happened with BPTT. This seems to indicate that the NN topology itself is

not enough to store the past historical data necessary for BPTT, which is the only learning

algorithm used in these experiments that

updates weights after each word is

presented.

8.1.2 Type 2 topology

Fifty percent of topologies in the

last generation of all experiments were of

the type shown in figure 38. Networks

with this topology had an average fitness of 88.93%. The average performance for these

networks during 144 bootstrap validation runs was 95.99% of the language processed

correctly, with the worst run correctly processing 84.91% and the best run correctly

processing 97.62%. This topology uses 49 of the 75 hidden nodes available, and has a

total of 1116 connections.

The critical point in this type of topology is the second hidden layer, shown in solid

gray in figure 38. This layer receives input from three different paths, all of which start at

the seventh hidden layer. One of these paths, which includes the third hidden layer, has

one step between the seventh and second hidden layers. Another path, which includes the

sixth and fourth hidden layers, has two step between the seventh and second hidden layers. 

The last of these paths, which includes the sixth, third, and eight hidden layers, has three

step between the seventh and second hidden layers. All the layers in these three paths
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participate in the processing of sentences by copying their input to their output. By doing

this, they provide the seventh hidden layer with information regarding three consecutive

words in the sentence being processed. The seventh hidden layer then determines sentence

syntax, and provides this information to the eighth hidden layer, which connects back to

the first hidden layer. Information communicated in this manner includes how many noun

phrases have been seen so far, the presence or absence of an article, and how the noun

phrases relate among themselves and to verb phrases. For example, after seeing “the

boy”, the seventh layer activates to 100111. Showing a different type of noun phrase, for

example “john”, causes a different activation (in the case of  “john”, 001010). 

In a sentence with two different verb phrases, this topology uses the “delayed”

information received by the second layer to determine what role these verb phrases take.

For example, with “the boy that ran after the horse ran after the girl” we

have different activations each time “ran” is processed. After the first showing of  “ran”,

which is part of a verb phrase that acts as the modifier to the noun phrase “the boy”, we

get an activation pattern of 101100. For the second “ran”, which is part of the verb

phrase for which “the boy” is the agent, we obtain 101010. This last activation is the

same when “ran” is seen in a sentence like “john ran in the park”, where once again

the occurrence of “ran” being looked at is used as the verb for which the first noun

phrase is an agent.  The activation patterns presented here are similar for other sentences

of similar structure. This information is then received in the seventh hidden layer, which

can then use it to decide the role of the word it is currently receiving from the input layer. 

When a noun is entered, it is treated as a modifier for a verb phrase if a noun phrase and a
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Figure 39: type 3 topology.

verb for which that noun phrase is agent have already been entered, i.e. NP VP N. If,

instead, a noun is entered at the beginning of a sentence, it is treated as an agent. Different

sequences of words cause the seventh hidden layer to activate different patterns, which

causes the same word to be treated differently by the first seventh layer.

The output of the seventh hidden layer is sent to a hidden layer that connects to the

output layer. This last hidden layer simply copied its input to its output, providing

information gathered by the rest of the network to the output layer. 

Unlike type 1 topologies, where networks were successfully trained with BPTT

only when using high values for backstep, type 2 topologies required high values for

backstep when being trained with Quick Propagation Through Time (QPTT). The average

value for this parameter was 4.43, and no network was successfully trained using QPTT

with backstep lower than 3. Back Propagation Through Time (BPTT) and Batch Back

propagation Through Time (BBPTT), on the other

hand, could train networks using values of backstep

as low as 1.

8.1.3 Type 3 topology

Close to 17% of topologies in the last

generation of all experiments were of the type shown

in figure 39. The average fitness for this topology

was 87.59%. The average performance for these networks during 144 bootstrap validation

runs was 87.59% of the language processed correctly, with the worst run correctly

processing 86.20% and the best run correctly processing 88.84%. This topology uses 61
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of the 75 hidden nodes available, and has a total of 3654 connections.

Processing in this type of topology starts with the third hidden layer receiving

words from the input layer. With the help of a feedback loop to be discussed later, this

layer discriminates among nouns, successfully keeping even nouns with almost identical

semantic properties (for example, “john” and “mary”) apart from each other. This layer

also correctly identifies if these nouns are being used as agents or recipients in their

corresponding phrases. This information is fed to the fourth hidden layer, which is

connected to the output layer. As we will see later, this layer receives information about

the most recently entered word, and the one entered two time-steps before. It then

combines these two pieces of information and feeds it to the output layer.  

The second hidden layer receives this information and classifies it into one element

of the set {noun, transitive verb, intransitive verb, preposition-article}. In this way,

information regarding the last word entered and the word entered two time-steps back is

used to determine how the next word should be used. For example, in the sentence “john

saw that mary ran in the park”, two time-steps after presenting “john” the first

hidden layer activates with pattern 110000101101100. This pattern is always seen two

time-steps after presenting “john” in the role of agent, but not when used in other roles.

In the fourth time-step of this sentence, then, the third hidden layer sees that “mary” is

being entered at the same time it sees that “john” was used two time-steps ago as an

agent. This allows the first hidden layer to recognize “mary” as belonging to a noun

phrase that will be used as an agent. The situation is different when there is only one word

between “john” and “mary”, for example in “john saw mary”. 
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Figure 40: type 4 topology.

This type of processing is useful for other types of sentences as well. For example,

in a sentence like “the boy that ran after the girl ran after the horse”, what

the third hidden layer sees two time-steps after seeing “boy” is “ran”. This helps the third

hidden layer to determine that the verb phrase being presented is part of a relative clause.

If “ran” were seen only one time-step after seeing “boy”, it determines that “ran”

belongs to a verb phrase for which “boy” is an agent. 

8.1.4 Type 4 topology

Close to 17% of topologies in the last

generation of all experiments were of the type shown in

figure 40. The average fitness for networks with this

topology was 81.65%. The average performance for

these networks during 144 bootstrap validation runs

was 82.689% of the language processed correctly, with

the worst run correctly processing 80.39% and the best

run correctly processing 85.97%. This topology uses 31 of the 75 hidden nodes available,

and has a total of 1264 connections.

This type of topology has two different paths interacting to process a sentence.

The path composed of hidden layers 4, 5, and 7 generates descriptions of verb phrases.

For example, it activates 00 for “saw” or 11 for “ran”. This information is then fed

through a delay of two timesteps that ends at the hidden layer connected to the output. 

Descriptions of noun phrases are generated by the path composed of hidden layers

1 and 3. The second hidden layer in this path outputs a pattern indicating which noun was
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seen. For example, “john” will cause this layer to activate 110, “mary” activates 111, and

“boy” or “girl” activates 010. This output goes through a delay of three hidden layers

before connecting to the output.

Information about the noun phrase and verb phrase provided by these two paths is

received by hidden layer 8, which is connected to the output layer. Because this layer has a

feedback loop that delays signals for one time step, it can continue to differentiate between

characteristics of different phrases after the words of the phrase are no longer being shown

at the input. The network starts to commit errors, though, towards the end of long

sentences. It also fails to correctly identify relationships between phrases.

This type of network showed the highest sensitivity to data composition of all

topologies. In particular, networks could only be trained with sentences as part of a single

training group when using backsteps of 3 or higher. The situation was even worse when

using BPTT as the learning function, when the lowest backstep value that could be used

was 5. All other combinations of learning functions and data composition could

successfully train this topology with backstep values as low as 1.

8.2 Characteristics of successful topologies

After examining successful topologies, we start to recognize common

characteristics for all neural networks that were successfully trained with the natural

language task described previously. 

We can see that successful networks use a low number of connections. The initial

idea was to penalize networks by multiplying their fitness by (17475 - C)/17475, where C

was the number of connections used. This would have served as a pruning mechanism,
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helping the system to prefer networks with fewer connections in order to avoid topologies

that overfitted the training data, thus failing to generalize. In practice, the fitness of

networks that used a small number of connections was higher even before applying the

penalty mentioned above. In order to verify the possible importance of having few

connections, I modified the penalty so that a network’s fitness was multiplied by

17475/(17476-C). This had the effect of rewarding networks that used a high number of

connections. Even in this case the system converged towards the topologies presented

above, which have only between 6% and 21% of the maximum possible amount of 17475.

This is strong evidence that the intended task is better solved by networks with a low

number of connections.

Many researchers choose to prune some of the weights of the network in order to

find a similar network that generalizes better. Examples of this technique can be found in 

Solla,  Le Cun & Denker (1990), Stork & Hassibi (1993),  Smolensky & Mozer (1989),

and Dow & Sietsma (1991). Instead of using any of these techniques, the GA system I

have used in this research converges towards networks with fewer connections because of

the nature of the fitness function being used.

Another characteristic of successful topologies is the presence of feedback loops.

This in itself is not surprising, since a network processing a sentence needs to react

differently to the same word depending on the position in a sentence where it appears.

Most networks, though, have a feedback loop that starts and finishes at a hidden layer that

takes its input from the input layer. This feedback loop provides a context for the word

being entered. That is, it is used to generate and provide information regarding the type of
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sentence being processed, and where in the sentence the system currently is (as with type 1

topologies), or information regarding words entered in past time-steps so that a decision

can be made about how the next word is going to be used (as with type 2 and 3

topologies). 

In the cases where there are hidden layers receiving input from two or more

different sources, the hidden layer is being used for similar purposes in all cases. For

example, topology types 2, 3, and 4 all have hidden layers that use these multiple paths in

order to receive information about a sequence of words previously entered into the

network. This information is used to determine what type of phrases are being entered, as

well as the interclause relationships. In the case of topologies 2 and 3, a hidden layer is

receiving information about words separated by two time steps, while in type 4 topologies

it receives information about two consecutive words. Type 4 topologies have their

greatest difficulty in determining interclause relationships, which cannot be determined by

looking at two consecutive words for the language being treated here. 

For this restricted language, though, most relationships between phrases can be

determined by looking at three consecutive words. For example, in a sentence like “the

boy that ran after the girl ran in the park”, looking at words “boy that

ran” allows us to determine that noun phrase “the boy” is the agent of the second verb

phrase (“ran in the park”) and the first verb phrase (“ran after the girl”) is a

modifier of “the boy”. With a sentence like “the boy ran in the park”, words “boy

ran in” allow a NN to detect that “the boy” is the agent of “ran in the park”. As

we can see, different sets of three words are enough to determine the sentence structure of
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these two sentences.  

8.3 Comparison with previously used topologies

In order to make better comparisons between results obtained with the system

described above and previous research in this field, I evolved NN configurations for

several other well-known topologies. To do this I have used the same general system

described above, in this case running experiments where the network topology is fixed and

only parameters such as learning function, training data composition, and learning

parameters are evolved. Results for each type of network were based on 144 bootstrap

validation runs, each with a population size of 48 elements. Topologies treated this way

are fully connected networks, Simple Recurrent Networks (SRN) (Elman 1991), Frasconi-

Gori-Soda networks (FGS) (Frasconi, Gori, Soda 1992), and Narendra-Parthasarathy

networks (N-P) (Narendra, Parthasarathy 1990).

Fully connected networks have a single hidden layer, and each hidden node is

connected to every other hidden node. SRN, of which an example with four hidden nodes

is shown in figure 41(a), have two hidden layers of identical size. One of these hidden

layers takes its input from all of the input layer, and sends its output to all  of the output

layer. Each node in the second hidden layer takes its input from one of the hidden nodes in

the first hidden layer, and sends its output to each node in the first hidden layer. FGS

networks, shown in figure 41(b), also have two hidden layers of identical size. In this case,

one of these hidden layers takes its input from all of the input layer, and sends its output to

all  of the output layer. Each node in the second hidden layer takes its input from one of
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Figure 41: SRN, FGS, and N-P topologies.

the hidden nodes in the first hidden layer, and sends its output to the same node. N-P

networks, shown in figure 41© have a single hidden layer. Each node in this hidden layer,

takes its input from all of the input layer, and sends its output to all  of the output layer. In

addition, each node in this hidden layer receives input from each node in the output layer.

To allow for better comparisons with the networks evolved by the GA, these four

types of networks were configured with approximately the same number of hidden nodes.

SRN and FGS networks had 76 hidden nodes each (since they require an even number of

nodes), and N-P and fully-connected networks had 75. 

SRN networks had an average fitness of 70.58% of the language processed

correctly, with the worst run correctly processing only 17.69% of all inputs and the best

run correctly processing 90.40%. 

Fully connected networks had an average fitness of 72.95% of the language

processed correctly, with the worst run correctly processing only 17.69%of the language

and the best run correctly processing 90.41%. 

FGS networks had an average fitness of 71.85% of the language processed
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correctly, with the worst run correctly processing 33.29% of the language and the best run

correctly processing 90.40%.

Finally, N-P networks had an average fitness of 72.95% of the language processed

correctly, with the worst run correctly processing only 17.79% of all inputs and the best

run correctly processing 90.41%.  

These results are summarized in figure 42 and compared with the four topologies

described earlier. Clearly the four topologies evolved by the GA outperform the most

commonly used NN topologies. Although some previously used topologies managed to

outperform some evolved topologies in the best of cases, on average the evolved

topologies performed better by more than 10%. In addition, previously used topologies

demonstrate a higher sensitivity to initial conditions. The worst performance for previously

used topologies is more than 45% lower than the worst performance for evolved

topologies.
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Topology Ave. Best Worst

Type I 90.21 92.09 88.97

Type II 95.99 97.62 84.91

Type III 87.59 88.84 86.20

Type IV 82.69 85.97 80.39

SRN 70.58 90.40 17.69

Fully
connected

72.95 90.41 17.69

FGS 71.85 90.40 33.29

N-P 72.95 90.41 17.79

Figure 42: performance statistics comparison between evolved and
previously used topologies.

8.5 Comparison with other corpus-based methods

Several researchers have used methods other than neural networks to train systems

to perform tasks similar to the one I have used in my research. Some of these systems are

similar to NN in that they learn based on being presented a corpus of training data.

Following is a brief description of some of these systems, and how their performance

compares to the results I have obtained with neural networks configured by genetic

algorithms.

Skut, Brants, Krenn and Uszkoreit (Skut, Brants, Krenn, et. al., 1998) used a

combination of N-grams and Hidden Markov Models to annotate segments of a German

newspaper. Their system correctly tagged for part-of-speech, grammatical functions, and
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phrasal categories in 85-90% of test cases. 

Hermjakob (Hermjakov, 1997) trained decision trees to perform syntactic and

part-of-speech tagging. This system correctly identified part-of-speech in 98.4% of cases,

and correctly identified phrases in 89.8% of cases. Hermjakov’s model depended heavily

in morphological, syntactical, and semantical information, as provided by 205 features.

De Lima (de Lima, 1997) trained an N-gram system to identify which noun served

as subject and which noun served as object to the verb of a sentence. After being trained

with close to 65% of the complete language, the system correctly processed 90.49% of all

sentences.

Although the set of sentences used in the experiments mentioned above is not

identical to the one I have used, we can see that the GA-NN I have developed generates

correct outputs in a higher percent of test cases. In addition, although the languages used

in these other research had a bigger vocabulary, they also allowed for fewer phrases than

the one I have used. 

8.6 Effect of GA parameters.

In order to check the effect of mutation on the search for effective NN

configurations, experiments were repeated with different mutation rates.  Researchers

have found that there is an inverse relationship between population size and mutation

rates. That is, the higher the population size, the lower the ideal mutation rate is (Schaffer,

et al, 1989).

Each mutation rate value tested was used in a total of 4 experiments. Runs

performed with mutation rates of 0% and 10% converged to the same types of
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configurations, but runs using a value of 10% took close to 15% more generations to

reach those configurations. The fact that runs using a mutation rate of 0% reached the

same configurations as runs using a higher mutation value indicates that a population size

of 48 elements contains enough genetic diversity to avoid early convergence.

Experiments were also run with a mutation rate of 100%, which equates to

performing a random search. These experiments did not converge after as many as 100

generations, and the elements of these populations performed considerably lower than

those of experiments that used the lower mutation values. This corroborates the idea that

the genetic algorithm is finding better solutions by combining good solutions, as opposed

to simply exploring the problem space randomly.

Tanese (1989)  has described another way in which population size can affect the

performance of a genetic algorithm. If a population contains elements representing more

than one minimum, crossover operations between these different elements can lead to

offspring with worse fitness than either parent. Although such elements would be

discarded as part of normal GA operations, generating and then eliminating them slows

the evolution process. Although the four topologies presented here have some common

characteristics, they are in fact solving the given NLP task using different approaches. A

single population of 48 elements, therefore, was able to evolve four different successful

solutions of the given NLP problem without causing interference between the different

minima.

8.7 Effect of training set composition

None of the experiments reported here showed a preference for one training mode
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over the others. That is, each of the topologies discussed above used each training mode

in almost identical proportions. 

The outcome was different, though, when the four evolved topologies presented

here where trained with 20% or less of the complete language. In experiments where the

training set was composed of 20% of each of the three sentence complexity levels,

networks showed different behavior depending on the number of sentences from

complexity group 1. When the training set had less than 30 sentences from complexity

group 1, the networks were successfully trained only when being presented with sentences

from group 1 by themselves before training with more complicated sentences (training

modes 3 and 4). In cases where there were more than 30 sentences from complexity group

1, networks were successfully trained using any of the four available training modes.

In experiments using 19% or less of the complete language, networks were

successfully trained only when all sentences were presented as part of a single training set,

regardless of what the distribution among the three complexity levels was. 

8.8 Effect of transfer functions

Analysis of the transfer functions being used in hidden nodes reveals that they have

little to no effect on the network’s performance. All transfer functions are used in all of the

networks, with the average number of times they are used being very close to what they

would be used if distributed equally among all hidden nodes.

No hidden layer was composed of nodes using only one type of transfer function.

In order to verify the effect of transfer function selection, I conducted experiments where

all nodes were restricted to using the same pre-selected transfer function. When using Step
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 Transfer   
  function

Ave. Number
of times used

Fewest
times used

Most
times
used

Standard
Deviation

  Product 11.8 7 16 2.48
Step 10.4 7 16 2.42

Logistic 9.1 4 14 3.45
Identity 9.5 7 12 1.80
Tanh 11 6 16 2.93
Sign 11.8 8 16 2.48

less than 0 10.4 5 15 3.07

Figure 43: statistics on usage of available transfer functions.

functions, Logistic functions, and Tanh functions, the genetic algorithm converged to

topologies similar to the ones presented above. In addition, the topologies had

performances that fell in the same ranges as those presented above. Statistics regarding the

number of times each transfer function was used can be found in figure 43.

8.9. Future research

After analyzing networks that perform efficiently for the task presented here, it is

evident that some of these networks are detecting grammatical properties shared by all

sentences. For example, there are no passive verbs in the language used, which also means

that the first noun phrase of all sentences is used as the agent for one of the two verb

phrases. Because of this, some networks learned to indicate this feature regardless of the

type of sentence being seen at the input, even though they didn’t have the ability to

correctly process the rest of the sentence.

In addition, some topologies learned to make decisions about a sentence by only

looking at a small window of consecutive words. For example, topology types 3 and 4
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have certain hidden layers receiving words after passing them through delays of one, two,

and three time steps. This allows a layer to compute its output based on three consecutive

words of the sentence in question. With the type of language being used in these

experiments, three consecutive words are enough to determine most characteristics of the

sentences. We can see this property of the language with sentences like “the boy ran

after the girl” and “the boy that ran after the girl saw the horse.”  In

the first case “the boy” serves as agent of the first verb phrase, “ran”. In the second

case “the boy” is agent of the second verb phrase, “saw”. This distinction can be

detected by a neural network long before the second verb phrase is seen. In fact, a

network can detect this type of structure when it sees the three consecutive words “boy

that ran”. A network would not be able to make a decision like this one so early with a

sentence like the classic “the horse raced past the barn fell”, where it is only

after seeing the verb “fell” that we know “raced past the barn” is a modifying

phrase, and not a verb phrase. Using a language that includes this type of sentence might

lead to the genetic algorithm developing different types of topologies. A possible outcome

of such an experiment might be populations with a higher percentage of type one

topologies, since this type of topology stores information about the type of sentence being

processed in its hidden layers, as opposed to depending on having a hidden layer receive

consecutive words of a sentence.

Another aspect of this research that needs further study is that of representation of

words at the input and output layers. The research presented here has led me to believe

that binary representation of semantic attributes, and considering all of them equally
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important, leads to learning that ignores some of these attributes. For example, there

might not be enough of an incentive during training to distinguish between similar words,

such as “john” and “mary”. More descriptive information might be needed for these and

other nouns, such as shape, size, texture, and others.  

In addition, the language used in the research presented here has all ambiguities

“resolved” before the network is trained. For example, in the sentence “john was

running after the boy in the park” the prepositional phrase “in the park” can

be attached to either the verb phrase “was running” or the object in the prepositional

phrase “after the boy”. For all sentences of this type, the NN have been trained to

attach the second prepositional phrase to the object of the first prepositional phrase, thus

eliminating the process of having to decide how to attach phrases in truly ambiguous

sentences. Take a classic example such as “the boy saw the girl with the

telescope”. We could attach the prepositional phrase “with the telescope” to either

the verb “saw” or the noun phrase “the girl.” Psycho-linguistic theory uses principles

such as minimal attachment or late closure to explain how humans process this and other

types of ambiguities, but these principles on occasion will make contradictory predictions.

I plan to explore how the application of these and other principles to the training data, in

different proportions and situations, affects the type of attachment a neural network

makes. A neural network might make an attachment based on where that particular phrase

has been attached before, or where phrases in its current position have been attached

before, or how words with similar semantic properties have been used before.
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9. Conclusions

Given the large number of parameters that can be controlled in a neural network,

and the fact that each of these factors can affect NN performance, one of the main

questions a researcher using NN needs to answer is what values to give to these

parameters. The way in which these parameters are assigned values is usually based on

notions of how it was that the NN should attack the problem at hand. At the same time,

how to choose values for this parameters is still an open question.

In this research I have used a genetic algorithm to automatically search for optimal

configurations for a particular natural language task. The GA does this without assuming

anything about the problem being solved. The GA is responsible for determining network

topology, training data composition, transfer functions, and the learning algorithm to use.

Networks developed using this system perform better than other commonly used

topologies. The four topologies evolved by the GA were superior to commonly used NN

topologies, with evolved topologies performing better on average by at least 10%. In

addition, previously used topologies demonstrated a higher sensitivity to initial conditions.

The worst performance for commonly used topologies was more than 45% lower than the

worst performance for evolved topologies. 

Parameters dealing with network topology (number of nodes and layers and

connections among them) were most significant in successful configurations. Training data

composition had some effect, but mutation rate and transfer function played virtually no

role in the outcome.

Some of the successfully evolved configurations show behavior that could prove
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useful for a wide range of languages, while others demonstrate the ability to take

advantage of patterns present only  in the language they were processing. This shows

promise for all tasks where an optimal configurations is not known, and at the same time

helps identify required NN characteristics given particular language properties.
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Appendix A
Words in the Vocabulary 

Nouns: boy, girl, john, mary, horse, duck, car, boat, park, river

Verbs: saw, swam, swimming, ran, runs, running, is, was, raced, floated, said, heard

Auxiliary verbs: is, was 

Adjectives: fast, blue , red

Articles: the

Prepositions: with, in, after

Pronouns: that, she, they

Adverbs: fast

Pronoun: that

Conjunction: that
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Appendix B
Sentences in the Language

Sentences in “complexity 1" group:

john ran
mary ran
the boy ran
the girl ran
the horse ran
the duck ran
john runs
mary runs
the boy runs
the girl runs
the horse runs
the duck runs
mary swam
john swam
the boy swam
the girl swam
the duck swam
the horse swam
mary was swimming
john was swimming
the boy was swimming
the girl was swimming
the duck was swimming
the horse was swimming
the horse raced
the duck raced
john raced
mary raced
the boy raced
the girl raced
mary is running
john is running
the horse is running
the duck is running
the boy is running
the girl is running
mary was running
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john was running
the horse was running
the duck was running
the boy was running
the girl was running
the boat is blue
the boat is red
the car is blue
the car is red
the boat was blue
the boat was red
the car was blue
the car was red
the horse ran fast
john ran fast
mary ran fast
the girl ran fast
the boy ran fast
the duck ran fast
the car ran fast
the horse was running fast
john was running fast
mary was running fast
the girl was running fast
the boy was running fast
the duck was running fast
the car was running fast

Sentences in “complexity 2" group:

john saw the horse
john saw the duck
john saw the car
john saw mary
john saw the boy
john saw the girl
mary saw the horse
mary saw the duck
mary saw the boy
mary saw the girl
mary saw the car
mary saw john
john saw the river
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john saw the park
mary saw the river
mary saw the park
the boy saw the girl
the boy saw john
the boy saw mary
the boy saw the park
the boy saw the river
the boy saw the car
the boy saw the boat
the girl saw the boy
the girl saw john
the girl saw mary
the girl saw the park
the girl saw the river
the girl saw the car
the girl saw the boat
the girl saw the red boat
the girl saw the blue boat
the girl saw the red car
the girl saw the blue car
the boy saw the red boat
the boy saw the blue boat
the boy saw the red car
the boy saw the blue car
john saw the red boat
john saw the blue boat
john saw the red car
john saw the blue car
mary saw the red boat
mary saw the blue boat
mary saw the red car
mary saw the blue car
the horse raced in the park
the duck raced in the park
john raced in the park
mary raced in the park
the boy raced in the park
the girl raced in the park
the horse swam in the river
the duck swam in the river
john swam in the river
mary swam in the river
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the boy swam in the river
the girl swam in the river
the horse was swimming in the river
the duck was swimming in the river
john was swimming in the river
mary was swimming in the river
the boy was swimming in the river
the girl was swimming in the river
john ran in the park
mary ran in the park
the boy ran in the park
the girl ran in the park
the horse ran in the park
the duck ran in the park
john was running in the park
mary was running in the park
the boy was running in the park
the girl was running in the park
the horse was running in the park
the duck was running in the park
the boat in the park is blue
the boat in the park is red
the car in the park is blue
the car in the park is red
the blue boat is in the park
the red boat is in the park
the blue car is in the park
the red car is in the park
the boy is in the park
the girl is in the park
john is in the park
mary is in the park
the horse is in the park
the duck is in the park
the boat is in the park
the river is in the park
the car is in the park
the boat in the park was blue
the boat in the park was red
the car in the park was blue
the car in the park was red
the blue boat was in the park
the red boat was in the park
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the blue car was in the park
the red car was in the park
the boy was in the park
the girl was in the park
john was in the park
mary was in the park
the horse was in the park
the duck was in the park
the boat was in the park
the river was in the park
the car was in the park
mary runs in the park
john runs in the park
the horse runs in the park
the duck runs in the park
the boy runs in the park
the girl runs in the park
mary is running in the park
john is running in the park
the horse is running in the park
the duck is running in the park
the boy is running in the park
the girl is running in the park
the horse in the park is running
the duck in the park is running
the boy in the park is running
the girl in the park is running
mary was running in the park
john was running in the park
the horse was running in the park
the duck was running in the park
the boy was running in the park
the girl was running in the park
the horse in the park was running
the duck in the park was running
the boy in the park was running
the girl in the park was running
the boat floated down the river
the duck floated down the river
the blue boat is in the river
the red boat is in the river
the blue car is in the river
the red car is in the river
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the blue boat was in the river
the red boat was in the river
the blue car was in the river
the red car was in the river
the boy ran after the girl
the girl ran after the boy
the horse ran after the boy
the boy ran after the duck
the girl ran after the horse
the girl ran after the duck
john ran after the boy
john ran after the girl
mary ran after the boy
mary ran after the girl
mary ran after the horse
mary ran after the duck
john ran after the horse
john ran after the duck
john ran after the car
mary ran after the car
the girl ran after the car
the boy ran after the car
the horse ran after the car
the duck ran after the car
the boy was running after the girl
the girl was running after the boy
the horse was running after the boy
the boy was running after the duck
the girl was running after the horse
the girl was running after the duck
john was running after the boy
john was running after the girl
mary was running after the boy
mary was running after the girl
mary was running after the horse
mary was running after the duck
john was running after the horse
john was running after the duck
john was running after the car
mary was running after the car
the girl was running after the car
the boy was running after the car
the horse was running after the car



82

the duck was running after the car

Sentences in “complexity 3" group

the boy with the horse is in the park
the girl with the horse is in the park
the boy is in the park with the horse
the girl is in the park with the horse
the boy with the boat is in the park
the girl with the boat is in the park
the boy with the car is in the park
the girl with the car is in the park
the boy with the horse was in the park
the girl with the horse was in the park
the boy was in the park with the horse
the girl was in the park with the horse
the boy with the boat was in the park
the girl with the boat was in the park
the boy with the car was in the park
the girl with the car was in the park
the boy is in the park with the boat
the girl is in the park with the boat
the boy is in the park with the car
the girl is in the park with the car
the boy with the boat is in the river
the girl with the boat is in the river
the boy with the car is in the river
the girl with the car is in the river
the boy with the boat was in the river
the girl with the boat was in the river
the boy with the car was in the river
the girl with the car was in the river
john saw that mary ran in the park
mary saw that john ran in the park
john saw that the boy ran in the park
john saw that the girl ran in the park
john saw that the horse ran in the park
john saw that the duck swam in the river
mary saw that the boy ran in the park
mary saw that the girl ran in the park
mary saw that the horse ran in the park
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mary saw that the duck swam in the river
the boy saw that john ran in the park
the boy saw that the girl ran in the park
the boy saw that the horse ran in the park
the boy saw that the duck swam in the river
the girl saw that the boy ran in the park
the girl saw that john ran in the park
the girl saw that the horse ran in the park
the girl saw that the duck swam in the river
john said that mary ran in the park
mary said that john ran in the park
john said that the boy ran in the park
john said that the girl ran in the park
john said that the horse ran in the park
john said that mary was running in the park
mary said that john was running in the park
john said that the boy was running in the park
john said that the girl was running in the park
john said that the horse was running in the park
john said that the duck swam in the river
mary said that the boy was running in the park
mary said that the girl was running in the park
mary said that the horse was running in the park
mary said that the duck swam in the river
the boy said that john was running in the park
the boy said that the girl was running in the park
the boy said that the horse was running in the park
the boy said that the duck swam in the river
the girl said that the boy was running in the park
the girl said that john was running in the park
the girl said that the horse was running in the park
the girl said that the duck swam in the river
john heard that mary was running in the park
mary heard that john was running in the park
john heard that the boy was running in the park
john heard that the girl was running in the park
john heard that the horse was running in the park
john heard that the duck swam in the river
mary heard that the boy was running in the park
mary heard that the girl was running in the park
mary heard that the horse was running in the park
mary heard that the duck swam in the river
the boy heard that john was running in the park
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the boy heard that the girl was running in the park
the boy heard that the horse was running in the park
the boy heard that the duck swam in the river
the girl heard that the boy was running in the park
the girl heard that john was running in the park
the girl heard that the horse was running in the park
the girl heard that the duck swam in the river
john said that the duck swam in the river
mary said that the boy ran in the park
mary said that the girl ran in the park
mary said that the horse ran in the park
mary said that the duck swam in the river
the boy said that john ran in the park
the boy said that the girl ran in the park
the boy said that the horse ran in the park
the boy said that the duck swam in the river
the girl said that the boy ran in the park
the girl said that john ran in the park
the girl said that the horse ran in the park
the girl said that the duck swam in the river
john heard that mary ran in the park
mary heard that john ran in the park
john heard that the boy ran in the park
john heard that the girl ran in the park
john heard that the horse ran in the park
john heard that the duck swam in the river
mary heard that the boy ran in the park
mary heard that the girl ran in the park
mary heard that the horse ran in the park
mary heard that the duck swam in the river
the boy heard that john ran in the park
the boy heard that the girl ran in the park
the boy heard that the horse ran in the park
the boy heard that the duck swam in the river
the girl heard that the boy ran in the park
the girl heard that john ran in the park
the girl heard that the horse ran in the park
the girl heard that the duck swam in the river
john ran after the boy in the park
mary ran after the boy in the park
john ran after the girl in the park
mary ran after the girl in the park
john ran after the horse in the park
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mary ran after the horse in the park
john ran after the duck in the park
mary ran after the duck in the park
the boy ran after the horse in the park
the girl ran after the horse in the park
the boy ran after the duck in the park
the girl ran after the duck in the park
the boy that ran after the car is in the park
the girl that ran after the car is in the park
the boy that ran after the girl is in the car
the girl that ran after the boy is in the car
the boy that ran after the girl is in the park
the girl that ran after the boy is in the park
the boy that ran after the girl is in the river
the girl that ran after the boy is in the river
the boy that ran after the girl ran after the car
the girl that ran after the boy ran after the car
the boy that ran after the girl ran after the horse
the girl that ran after the boy ran after the horse
the boy that ran after the horse ran after the girl
the girl that ran after the horse ran after the boy
the boy that ran after the car ran after the girl
the girl that ran after the car ran after the boy
john was running after the boy in the park
mary was running after the boy in the park
john was running after the girl in the park
mary was running after the girl in the park
john was running after the horse in the park
mary was running after the horse in the park
john was running after the duck in the park
mary was running after the duck in the park
the boy was running after the horse in the park
the girl was running after the horse in the park
the boy was running after the duck in the park
the girl was running after the duck in the park
the boy that was running after the car is in the park
the girl that was running after the car is in the park
the boy that was running after the girl is in the car
the girl that was running after the boy is in the car
the boy that was running after the girl is in the park
the girl that was running after the boy is in the park
the boy that was running after the girl is in the river
the girl that was running after the boy is in the river
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the boy that was running after the girl was running after the car
the girl that was running after the boy was running after the car
the boy that was running after the girl was running after the horse
the girl that was running after the boy was running after the horse
the boy that was running after the horse was running after the girl
the girl that was running after the horse was running after the boy
the boy that was running after the car was running after the girl
the girl that was running after the car was running after the boy
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Appendix C 
List of possible relationships between phrases of the sentences 

Noun phrase 1 is agent of verb phrase 1. 
Noun phrase 2 is agent of verb phrase 1. 
Noun phrase 3 is agent of verb phrase 1.
Noun phrase 1 is agent of verb phrase 2.
Noun phrase 2 is agent of verb phrase 2.
Noun phrase 3 is agent of verb phrase 2.
Noun phrase 1 is patient of verb phrase 1.
Noun phrase 2 is patient of verb phrase 1.
Noun phrase 3 is patient of verb phrase 1.
Noun phrase 1 is patient of verb phrase 2.
Noun phrase 2 is patient of verb phrase 2.
Noun phrase 3 is patient of verb phrase 2.
Noun phrase 1 is recipient of verb phrase 1.
Noun phrase 2 is recipient of verb phrase 1.
Noun phrase 3 is recipient of verb phrase 1.
Noun phrase 1 is recipient of verb phrase 2.
Noun phrase 2 is recipient of verb phrase 2. 
Noun phrase 3 is recipient of verb phrase 2.
Noun phrase 1 modifies noun phrase 2.
Noun phrase 1 modifies noun phrase 3.
Noun phrase 2 modifies noun phrase 1.
Noun phrase 2 modifies noun phrase 3.
Noun phrase 3 modifies noun phrase 1.
Noun phrase 3 modifies noun phrase 2.
Verb phrase 1 modifies noun phrase 1. 
Verb phrase 1 modifies noun phrase 2.
Verb phrase 1 modifies noun phrase 3.
Verb phrase 2 modifies noun phrase 1.
Verb phrase 2 modifies noun phrase 2. 
Verb phrase 2 modifies noun phrase 3.
Verb phrase 1 modifies verb phrase 2.
Verb phrase 2 modifies verb phrase 1.
Noun phrase 1 modifies verb phrase 1.
Noun phrase 2 modifies verb phrase 1.
Noun phrase 3 modifies verb phrase 1.
Noun phrase 2 modifies verb phrase 2.
Noun phrase 2 modifies verb phrase 2.
Noun phrase 3 modifies verb phrase 2.
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Appendix D
Input Layer
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Appendix E
Output Layer
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Appendix F
Sequence of hidden node activations; topology type I, processing “john saw.”
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