A New Metric for Evaluating Genetic Optimization of Neural Networks

Jaime Davila
Hampshire College
School of Cognitive Science
Ambherst MA 01002
jdavila@hampshire.edu

Abstract- In recent years researchers have used genetic
algorithm techniques to evolve neural network topologies.
Although these researchers have had the same end result
in mind (namely, the evolution of topologies that are
better able to solve a particular problem), the approaches
they used varied greatly. Random selection of a genome
coding scheme can easily result in sub-optimal genetic
performance, since the efficiency of different evolutionary
operations depends on how they affect schemata being
processed in the population. In addition, the
computational complexity involved in creating and
evaluating neural networks usually does not allow for
repetition of genetic experiments under different genome
coding.

In this paper I present an evaluation method that uses
schema theory to aid the design of genetic codings for
NN topology optimization. Furthermore, this
methodology can help determine optimal balances
between different evolutionary operators depending on
the characteristics of the coding scheme. The
methodology is tested on two GA-NN hybrid systems:
one for natural language processing, and another for
robot navigation.

1 Introduction

In recent years researchers have used genetic algorit

have. In addition, information between these StartEn
markers defined how the nodes were connected toheac

other. The meaning conveyed by each position in the used
part of the genome depended on its distance from its
corresponding Start symbol.

Figure 1:
Fullmer and Miikkulainen.

example of coding used by

For example, the genome shown in figure 1 would generate

Hwo nodes, one for string “ S, a, 1, b, 5, a, -2, E" and

techniquesto evolve neural network topologies. Althdug another for string “ S, b, 0, @, 3, E", which wraps around
these researchers have had the same end result i mirthe end of the genome. Node “ @” had an initial activation

(namdy, the evolution of topologies thatre better abled
solvea particular problem), the approactiesy used varid
greatly.

De Garis (1996), for example, evolved NN by having a
series of “growth commands” give instructions on how to
grow connections among nodes. Each node in the network
processed signals that told it how to extend its synapses.
When two different synapses reached each other, a new node
was formed. The genetic algorithm was responsible for
evolving the sequence of growth commands that controlled
how the network developed.

Fullmer and Miikkulainen (1991leveloped a GA codin

of 1 (because of substring “ S, @, 1"), is connected to node
“b” with a weight of 5 (because of substring “ b, 5"),
and to itself with a weight of -2 (because of substring “ a,

- 2”). Node b had an initial activation of 0 (because of
substring “ S, b, 0”) and a connection to node a with a
weight of 3 (because of substring “ @, 3"). The network
evolved by this process was used to control a virtual
creature’s movements in a square field, avoiding “bad”
objects and coming into contact with “good” objects. The
GA continued to run until a network that could solve the
problem evolved. The number of generations needed until

System where pieces of a genotype went unused’ |mgat|nthls network was found varied between 7 and 304 for objects

biological DNA processing. Only informatiostored betwee

that could be identified before hitting them, and between 15

a Start marker and an End marker was used to generafd 414 generations when recognizing the object required
neworks. The amount of correctly configured StarteEn traveling around it looking for a characteristic view.

markersdefined how many hidden nodes the network @oul

Kitano (1994) used GA to evolve a sequence of graph population.
generation rules, as opposed to directly coding network An operation like crossover can disrupt a connectio
topology. Each genome defined a sequence of rules used to definition every time a crossover point is selected betwee
rewrite an element of the graph. When these rules were two genes that, taken together, defen connection between
applied until only terminal symbols remained, the graph nodesof a network. Therefore, how likely it fer crossove
defined a connectivity matrix which was then used to to cause this disruption can be estimated by the distanc
configure a NN. For example, if we were developing a between genes that combine to define any particula
network with two nodes, a genome might code rules [S > connectionlf a particular connection is defined by allelas i
ABJ[A > O1][B - 10]. When these three rules are applied ~ genesg andg,, then the bigger the distance betwegrard
we end up with a 2*2 matrix than defines the connectivity ~ g; , the bigger the chance that the connection wél b
between the two nodes in the network. disrupged by a crossover operation. Taking a sum o th
Given that the approaches presented above are ya vedistane between genes that can define a connectiod, an
quick glance at the options available, it is obvious ttha averagingover the numbeof connections, we obtain a tbta
reseachershave to choose a representation scheme &om disruption index (TDI) of
vast number of possibilitieRRandom selectio of a genome
coding scheme can easily result in sub-optimal geneti i i i o . .
perfamance,since the efficiency of different evolutioyar Y. | i-j1*DC(k, 1) *DC(k, 7))
operdions depends on how they affect schemata dpein X210 3=0 (1)
processedn the populationIn addition, the computatioha c
complexity involved in creating and evaluating ndura
networks usually does not allow for repetition of geweti where C is the number of connections, N is the number o
experiments under different genome coding. geres, P(x) returns the position of gene x ineth
This paper is an attempt at developing a metret can chromesome,and DC(K, X) equals to a number betwéen
be used to evaluate different evolutionary computatio and 1 wheh indicates what is the probability that gene x is
coding schemes. involved in defining connection k.

2 Evolving NN parameters 4 Case Studies
A review of the NN-GA literature quickly reveals tha The following section reports empirical testing ofeth
reseachershave chosen to evolve different aspects bf N mathematicaformulation presented abovYer two GA-NN
configurations. Concentrating on topgy, there are several hybrid systems: one for natural language processing, and
factors one might choose to optimize, such as numier canother for robot navigation.
nodesto use, how many hidden layers to have, howyman
noces to have in each hidden layer, or even if a lagere 4.1 Case Study #1: A Natural Language Processin
approach should be used or not. System

At the bwest level of abstraction, we can see topplog
optimization as a process that determines if a connectio This example is based on research originally presented i
shouldexist between nodeg, andxg, where Aand B rang Davila[1999a 1999h 19994, which was used to evolve Wl
across dl nodes that exist in a network. If having topologies for natural language processing. Aoeerview,
connectim betweenx, andxg is useful for the task bajn a network is asked to receive a sentence one word at a time,
solved, schema theory suggests that individuals ie th and to incrementally build a description of the sentence in its
population will benefit from having such a conneciio output nodes. For example, if the sentence “the boy ran in
present all other things being equal (Holland [1975]).rFo the park” is entered, the network should respond by
the same reason, any evolutionaperator that disrupts the indicating that “the boy” is a noun phrase, and it acts as the
existence of useful traits could deseaffspring fitness. If agent of verb “ran”. The network should also indicate that
we asume that the typical evolutionary operations o “in the park” is a prepositional phrase modifying the verb
cros®ver and mutation are to be applied, we can amalyz “ran”.

genomecoding in light of how it affects the way in whic Entering a word into the network amounts to activating
evolution progresses. a single node that represents the given word at the input

layer, and at the same time activating those semantic nodes
3 Low-level topology definition that reflect the meaning of the word being entered. For

If we view evolutionary computations as a process to eefinxample, to enter the word “john”, a node that represents

connectionsdetween any two nodes as their main resulp thethat word is activated, as well as nodes that indicate that the

we candetermine their ability to combine building blockg b Word being entered is a proper noun, singular, concrete, and
estimatinghow likely it is for evolutionary operationgt human. In addition, an ID node is set to a value that would
disrupt connection definitions;the less likely it is fo allow the network to distinguish “john” from other words

connectiondefinitions to be disturbed, the easiteis for the ~ that might have the same semantic identity, such as “mary”.

algorithm to combia building blocks present in the current ~ The language used in this research is composed of ten
nouns: boy, girl, john, mary, horse, duck, car, boat, park,

Under SYSTEM-A, the existence of a connectidn
betwe@ nodesi & j depends on the number of layersttha
the hidden nodes are divided into (gene 30), which kyer
containnodesi & j (genes0-29), where the layer with ned
j takesits input from (a gene from among genes 31-60
depemnling on the values of j, gene 30, and the nodegi/laye
distribution determined by genes 0-29), avitere the layer
with nodei sends its output to (a gene from among gene
61-90, again depending on the \eduwfi, gene 30, and the
nodes/layer distribution determined by genes 0-29).

As a comparison, the same type of network topplog

river. Available semantic nodes are: human, animal, or
mechanical (three mutually exclusive nodes); animate or
inanimate (represented by one node, active if the noun is
animate); proper (active if true, inactive otherwise); and one
ID node.

In the original formulation for this problem, which I will
call SYSTEM-A for the remainder of this paper, each
network has 75 hidden nodes between the input and output
layers. These 75 nodes are divided into N hidden layers,
where N is a number between 1 and 30. The exact number
of hidden layers is determined by the first gene of the

corresponding genome. This position stores a random
floating point number, with a value between 0 and 1. To
determine how many hidden layers a network has, the value
of this gene is multiplied by 30, and rounded to the next
highest integer. If the result of this rounding up is 31, the
network uses 30 hidden layers.

The number of hidden nodes in each of these hidden
layers is also determined by the network’s corresponding
genome. The genome has 30 genes used to code the “relative
worth” of each of the possible hidden layers. Once the
number of hidden layers is determined to be N using the
process described above, the N layers with the highest
relative worth are identified. The 75 available hidden nodes
are distributed among each of these N hidden layers
according to each layer’s worth relative to the sum of all N
worth values.

The connections between layers are also determined by
the network’s genome. For each of the thirty possible layers,
there is a gene that indicates where the layer takes its input
from. Each of these genes stores a random floating point
value between 0 and 1. To determine where each hidden
layer takes its input from, its “takes-its-input from” gene
value is multiplied by N+2 (where N is the number of
hidden layers this network will have, as determined by the
procedure outlined previously), and rounded to the nearest
integer. The resulting number points to which layer this one
takes its input from. We multiply by N+2 to allow a hidden
layer to take its input from any of the N hidden layers, as
well as either the input or the output layer. A value of 1
would mean the layer takes its input from the input layer. A
value of N+2 would mean the layer takes its input form the
output layer. For values between 2 and N+1, the layer would
take its input from the layer with the (N-1)™ highest relative
worth.

Where each layer sends its output is determined in a
similar way, using positions 62-91 of the genotype. Each of
these genes stores a random floating point value between 0
and 1. To determine where each layer sends its output, its
“sends-output-to” gene value is multiplied by N+1 and
rounded to the nearest integer. The resulting number points
to which other layer this one will send its output. We
multiply by N+1 to allow for hidden layers sending its
output to any of the N hidden layers, as well as to the output
layer. A value of N+1 would mean the layer sends its output
to the output layer. For values between 1 and N, the layer
sends its output to the layer with the N™ highest relative
worth. No layer sends its output back to the input layer.

could be evolved by using the following codirsgheme
which | will call SYSTEM-B. Each network still has 75
hidden nodes, but they are always divided into 30 hidden
layers (that is, there is no gene used to determine how many
hidden layers to use). The distribution of these 75 nodes into
30 layers is done based on 30 “relative worth” values in the
genome. To determine how many node each layer has, the
relative worth for a specific layer is divided by the sum of
relative worth of all 30 layers, and then multiplied by 75.

The connections between layers are also determined by
the network’s genome. For each of the thirty layers, there is
a gene that indicates where the layer takes its input from.
Each of these genes stores a random floating point value
between O and 1. To determine where each hidden layer
takes its input from, its “takes-its-input from” gene value is
multiplied by 32 and rounded to the nearest integer. The
resulting number points to which layer this one takes its
input from. A value of 1 would mean the layer takes its
input from the input layer. A value of 32 would mean the
layer takes its input form the output layer. For values
between 2 and N+1, the layer would take its input from the
(N-D™ hidden layer.

If we assume that DC(k,x) = 1 for all values of k and x,
TDI(SYSTEM-A) = TDI(SYSTEM-B). In reality, though,
DC(k,x) does not always return 1, and in fact it tends to
return smaller values under SYSTEM-B than under
SYSTEM-A. Notice, for example, that under SYSTEM-A
the set of gene sequences that would allow node n to be in
layer L has a higher cardinality than under SYSTEM-B,
given that SYSTEM-B always has 30 hidden layers, while
under SYSTEM-A the number of hidden layers is
determined by a gene. This will, in turn, affect which genes
are involved in defining a connection between two given
nodes, which affects DC(k,x). Under standard random
distributions, considering actual values for DC(k,x) would
give TDI(SYSTEM-A) > TDI(SYSTEM-B). What this
would mean is that it is easier for a particularly good
schema to be disrupted by crossover under SYSTEM-A than
under SYSTEM-B.

Aside from the effect of DC(k,x), of course, the actual
positioning of the genes and how they map into phenome
characteristics also has an effect on the disruption caused by
crossover operations. Take, for example, a system with the
same types of genes as SYSTEM-B, but where the position
of the genes has been altered. Instead of having 30 worth
values followed by 30 takes-input-from values and then 30
sends-output-to values, SYSTEM-C arranges genes so that

the worth, takes-input-from and sends-output-to genes for
any one particular layer are in three consecutive positions
(positions 3*L, 3*L+1, and 3*L+2, where L is the hidden
layer number). Because a gene with a particular functionality
will have the same effect on resulting phenomes regardless
of its position in the genome, we can discard terms DC(k,i)
and DC(k,j) in equation (1), and obtain

LYY e

k=0 1=0 j=

P(g;) 1)

TDI (a %))

Under this definition, TDI(SYSTEM-B) >
TDI(SYSTEM-C), since SYSTEM-C minimizes the
distance between the relative-worth and takes-input-from
genes . This means that crossover is less likely to disrupt

a useful schema under SYSTEM-C.

To verify the effect these disruptions might have o
solutionsfound by evolutionary computation, | perforche
the optimization of topologies for the natural langeag
problem outlined previously under the three gemom
coding schemes discussed aboue. order to bette
measure the effect of crossover computations wer
performed with no mutation, and populations ofl 2
elements.Network fitness values were computed by
taking the sum of square errors for all output nodes
throughout the presentation of a language of 419
sentences. Training is performed on 20% of this same
language. In order to verify consistent performance, al
ewlved networks were validated by performing 414
bootstrapvalidation runs per networfVeiss, Kulikowsk
1991).Evolutionaryruns were repeated 48 times, anel th
graplts presentedhere, although taken from particula
runs, are typical of results throughout all runs.

average fitness/generation

TO000 — —

fitness

[G—SSTEM—A

20000 L | L | L | L
o 10 20 30 40

Generation
Figure 2: Average fitness for topology
optimization runs under different genome
coding systems.

Figure2 shows the resultbrough 40 generations foreh
three methods. Coding schemeSYSTEM-B ard
SYSTEM-C prove to be much better than SYSTEM-A
Since all systems were seeded with the same nendo
number generator, this is probably caused by ahhig
disruption index for SYSTEM-A, which does not allo
the evolutionary algorithm to build upon good buildin
blockspresent in the original population. Both SYSTEM
B and SYSTEM-C reach comparable average fithes
values after 40 generations, but SYSTEM-C readhat
value in little over 50% the number of generason
requiredby SYSTEM-B. This is caused by an even lowe
TDI for SYSTEM-C, which allows the evolutionar
computationto make the best use of building bleck
present in the original population.

Figure 2 can also be useas an example of what the
TDI computation reveals about the relationship betwee
crossoverand mutatiorfor different coding schemes. &h
compuation carried out for SYSTEM-C has a lowe
chanceof building block disruption by the crossave
operation. is means that evolution will depend heavily
on operations other thacrossoverin order to introdue
new phenome characteristics into the population. & th
alsence of any such other operatiomrossover will
continueto exploit good solutions, but will perform it
exploration.This can be seen in figel 2 by the fact that
SYSTEM-C reaches the vicinity of the final aveeag
value fairly quickly, but then seems to fail to &n
anythingsignificantly better.The need for evolutiongr
exploration in a syste like SYSTEM-C can be provided
by operations suclas mutation. To corroborate this, the
expeiments described above were repeated usiang
mutationrate of1%. Results for those runs are presgnte
in figure 3.

average fitness/generation

higher mutation values
I ' I ' I

TOO00

fitness

[S—RYSTEM-B
[— SYSTEM—C

20000 . \ ‘ \ ‘ 1 .
o 10 20 0 40
Generation
Figure 3: average fitness values for runs

with 1% mutation.

As canbe seen above, SYSTEM-C still reaches bette
values for average fitness faster than SYSTEM-B{ bu
now has enough mutation to allow it to explore opsion
not present in the original population, and improvwe o
previous results towards the end of the genetic run
Notice also that the plateau experienced atbun
generations 5-10 when running without mutation is now
avoided.

4.2 Case study #2: A Robot Navigation System

To further analyze theffect of schema disruptions oreth
perfamance of evolutionary design of NN, | hav
dewelopeda NN evolution system where the numbér o
genesparticipating in the definition cd single connectio
can be onfigured to a number between 1 and 1000
Details of the task being solved can be found in (Lxgvi
2000). Briefly, a robot exists inside a cubic world with
dimensions 10*10*10. A single cube appears at the top
level of the world each second. Each of these boxes has

a random floating point worth value between 0 and 1 All
cubes fall one vertical unit per second. The robot located

at the bottom of the cube can move in any of four
directions (left, right, forward, or backwards) a single
step each second. Where the robot moves is determined

by a single output of a NN controlling it. The distance
between the robot and any cube at ground level is
computed, and the worth of the cube is divided by said
distance, creating a closeness measure . For each second
the simulation runs, this closeness measure is added to
the robot s fitness. This process iterates for 500 seconds.
The fitness of a NN is 500 minus the score attained by
the robot it controls. A screen capture of the running
process is shown in figu#e Brighter falling cubes
have a higher worth value.

Figure 4:

Cubic World screen capture.

A GA controls which set of sensor inputs is received by
the NN. In the simplest case, a positive value on the nth
gene means the nth input sensor is connected to the NN.
The connection weight between this input and the hidden
layer are determined by genes (1000 + (n-1)*H + 1) to
(1000 + n*H + 1), where H is the number of hidden
nodes to be used. This value for H is determined by
calculating the maximum amount of hidden nodes that
can be used while not ending with more that a
predetermined number of total connections. This method
for determining should have low values of TDI. Given
that the existence of a connection is determined by only
one gene, schema disruptions should be low.

The same evolutionary process can be repeated with
the same number of total genes while incorporating
different number of genes into the definition of each
connection. The existence of input connection G i
detemined by looking at P participants, where B i
chosenbefore the evolutionary run begins. The suim o
the alleles in genes {C%SIZE, (C+)%SIZE
(C+21)%SIZE, ...(C+PN%SIZE} is computed, wher
SIZE is the number of possible input connections and
is equal to SIZE divided by P. This produces a numbe
between0 and P. Dividing this number byviRe obtaina
numberbetweer0 and 1. This number is then multiglie
by 2°, producing a number between 0 a#d. The
existenceof connection C is determined by looking a th
Bt" bit of the binary representation of this last number
where B = C/I.

Given this coding scheme, the higher the numter o
participantsthe higher the chancésat evolution will te
disrupted by crossover destruction of schemakgipicd
averagefitness values for twdifferent runs are presente
in figure 5.

Figure 5:
using mutation rate of 5%.

average fitness for robots when

Of particular interest is the fact that, although bothsrun
fall into plateaus, the ones for the runs with 2
participantsare fewer and smaller. This is causeddy
higher TDI value introducing more genetic diversity t
the population This can be further understood whe
evolving topologies with 25 participants under smalle
mutationrates. Results of suchrun are shown in figar

6. Notice that the average fitness after 50 generations
under lower mutation rates, is very close tattfor only

1 participant and a higher mutation rate.

Figure 6:average fitness for runs with 25
participants.

5 On the
Methods
The methodology presented hereoisviously based oa
system's ahily to define particular connections between
2 nodes. This should nothunderstood to mean that the
individual connection level is the preferred representatio
scheméfor all genome coding systems. For example, th
TDI of a system thanaps each gene to a definitionaof
particulr connectionsof a network is TDI(.) = 0, bua
genomefor the language processing problem presemted i
this paper would need to have more tHai®00 positions
The low TDI value obtaed would be offset by the size
of the poblem space, and the impossibility of searching
through any significant part of it. In addition, & NN
designer hasletermined that the best way to approach a
problemis to have a system that stores internal states
thenusing a layered network is required, and a apdin
schemethatworks at that level might be preferred. Bve
in those cases, where the coding does not workhwit
individual connections, analyzing the scheme result
useful. When crossover disrupts the connection(s
betweentwo differentlayers, the magnitude of the chang
this causes increases with the number of connextion
between the layers involved.

In addition, there are cases where a researchert migh
chooseto use a coding scheme with higher TDI values

issue of Topology definitia

For example, coding scheme SYSTEM-A has a highe
TDI value that the other two systems presented, here
evenif we where to take DC(k,x) to return the sam
value O kx. At the same time, SYSTEM-A is the gnl
coding scheme of the three that directly codes far th
numker for hidden layers to be used. If this is a dekire
propery for a coding scheme, then a system with
higher TDI value might be called for. In generalNN
designermight choose to use a system with a high TD
value because of other foreseen advantages. TDI salue
give a good indication, though, of how likely it isrfo
building blocks to be disrupted, so that an edutate
choice can bénade.

7 Future Research

One of the most important aspects of the formulatio
preseted here is that of the function DC#. Fao
genome coding schemehat would be close to identical
otherwise (such as SYSTEM-Aa@ SYSTEM-B), DC(.)
canproduce dramatic differences, as seen in figurd 1.
completemathematical descriptioof this function, whib

is particular for each coding scheme, would allaw t
make better predictions regarding the feasibilitf o
different coding schemesnd provide guidance regardin
the balance between crossover and mutation.

In adlition, extended empirical verification of eh
model will allow to better undstand the effect of using
different operations during evolution for differen
representationahodels. For example, SYSTEM-C migh
benefitfrom evenhigher mutation values than used here
and this property should be related to actual values fo
TDI. This, combined with a better understanding o
function DC(.), will allow for better comparisons betvmee
TDI values and disruptions observed in empirical tests.

8 Conclusion

This paper has presented a neway of evaluating codm
schemesfor genetic algorithms used to optimize néura
network topologies. The methodology is based oa th
likelihood that crossover operations can effecyvel
congruct on useful building blocks present in initia
populatons. By doing so it estimates how easy it is fo
an evolutionary model to find good solutions toeth
problem at hand, while at the same time provglin
information regarding how to best balance explonatio
with exploitation in a genetic system. This methodology
results useful in designing a system that can effecivel
perform had natural language processing tasks, and can
in theory be extended to any GA/NN system.

Acknowledgements

I would liketo thank the School of Cognitive Sciende o
Hampshire College and the Department of Compute
Scienceat City College of New York for the networkg o
Sun Ultra-stations where the empirical results presgénte
here were obtained.

References

de Garis, H., (1996) CAM-BRAIN: The Evolutiongr
Engineeringof a Billion NeuronAtrtificial Brain by 200
Which Grows/Evolves at Electronic Speeds Inside
Cdlular Automata Machine (CAM)Lecture Notes in
Computer Science — Towards Evolvable Hardware, Vol.
1062, Springer Verlagpp. 76-98.

Davila, J., (1999a) Exploring the Relationship Betwee
Neurd Network Topology and Optimal Training Set b
Meansof Genetic Algorithmslnternational Conference
on Neural Networks and Genetic Algorithms, Springer
Verlag, pp. 307-311.

Davila, J. (1999b) Genetic Optimization of NN
Topologiesfor the Task of Natural Language Processing
International Joint Conference on Neural Networks,
Washington, D.C., 1999.

Davila, J. (1999c) Genetic Optimization of Neural
Network Configurations for Natural Language Learning.
Doctoral Dissertation, Department of Computer Science,
Graduate School and University Center, City University
of New York.

Davila, J. (2000) Genetic Evolution of Sensorsdan
Topology for a Neurally Qurolled Robot. To appear in
the Proccedings of the GECCO-2000 Workshops, 2000

Fullmer, B., Miikkulainen, R., (1991) Using marker-bdse
geneticencodingof neural networks to evolve finite-stat
behavior. Proceedings of the first European Conference
on Artificial Life. Paris, pp. 253-262.

Holland, 1., (1975), Adaptation in Natural and Artificial
Systems, Ann Arbor. University of Michigan Press.

Kitano, H., (1994) Designing Neural Networks ugin
Geretic Algorithm with Graph Generation System
Complex Systems, 4, pp. 461-476.

Romaniuk, S. (1994) Applying crossover operators to
automatic neural network construction, Proceedings of the
First IEEE Conference on Evolutionary Computation,
IEEE, New York, NY. pp. 750-752.

Weiss, S., Kulikowski, C. (199X omputer Systems that
Learn. Classification and Prediction Methods from
Satistics, Neural Nets, Machine Learning, and Expert
Systems. Morgan Kaufmann. SaNWlateq California.

