
Figure 1: Genes 1-31 for a sample genome.

Genetic Evolution of Neural Networks that Remember

Jaime J. Dávila
Hampshire College

School of Cognitive Science
Amherst MA 01002

Abstract - The GENDALC system has been previously used
to evolve NN topologies for natural language tasks. This
paper presents results on additional tasks that require
remembering and processing of previous input patterns.
These results indicate that GENDALC is particularly well
suited for tasks that require remembering.

I. INTRODUCTION

The GENDALC (Genetic Evolution of Neuron
Distribution and Layer Connection) system has been
previously used to evolve topologies for natural language
processing tasks [1]. Neural networks evolved in those
experiments performed better than other commonly used
topologies such as fully connected networks, Simple
Recurrent Networks, Frasconi-Gori-Soda networks (FGS),
and Narendra-Parthasarathy networks [2]-[4]. In these
experiments words were entered one word at a time, thus
requiring that the NN remember words no longer at the
input layer in order to correctly process a sentence. In
addition, the GENDALC system can also be used to
optimize other NN parameters such as learning function
to be used, values for different learning parameters, and
type of training data to use during training.

In order to determine the general ability of the
GENDALC system to evolve solutions to different
problems, it was presented with a problem in a different
domain. In this case, the evolved networks were required
to imitate the behavior of infants described by Spelke,
Breinlinger, Macomber and Jacobson [5]. This task is
discussed in more detail in section III of this paper.

II. DESCRIPTION OF THE GENDALC SYSTEM

The GENDALC system determines NN topologies by
distributing 75 hidden nodes among up to 30 hidden
layers, and then determining how these hidden layers are
connected to each other.

Each topology in the GENDALC system is configured by
a genome in a genetic algorithm population. The exact
number of hidden layers is determined by the first gene of
the corresponding genome. This position stores a floating
point number, with a value between 0 and 1. To determine
how many hidden layers a network has, the value of this
gene is multiplied by 30, and rounded to the next highest
integer. If the result of this rounding up is 31, the network
uses 30 hidden layers.

The number of hidden nodes in each of these hidden

layers is also determined by the network’s corresponding
genome. The genome has 30 genes used to code the
“relative worth” of each of the possible hidden layers.
Once the number of hidden layers is determined to be N
using the process described above, the N layers with the
highest relative worth are identified. The 75 available
hidden nodes are distributed among each of these N
hidden layers according to each layer’s worth relative to
the sum of all N worth values.

Take, for example, the partially illustrated genome in
figure 1, here showing genes 1 through 31. The first gene,
with a value of .23, determines that this network will have
7 hidden layers. The relative worth for all 30 layers are
represented here by genes 2 through 31. Among these, the
seven with highest worth value are layers 18, 14, 1, 21, 7,
20, and 27 (with relative worth values of .99, .96, .91, .90,
.84, .84, and .75). The sum of these relative worth values
is 6.19, which means that each of these seven layers will
have 75*X/6.19 nodes, where X is each layer’s relative
worth. Therefore, for this example layers 18, 14, 1, 21, 7,
20 and 27 will have 12, 12, 12, 10, 10, 10, and 9 nodes,
respectively.

The connections between these seven layers are also
determined by the network’s genome. For each of the
thirty possible layers, there is a gene that indicates where
the layer takes its input from. Each of these genes stores a
floating point value between 0 and 1. To determine where
each hidden layer takes its input from, its “takes-its-input
from” gene value is multiplied by N+2 (where N is the
number of hidden layers this network will have, as
determined with the procedure outlined previously), and
rounded to the nearest integer. The resulting number
points to which layer this one takes its input from. We
multiply by N+2 to allow for hidden layers taking their
input from any of the N hidden layers, as well as either
the input or the output layer. A value of 0 means the layer

Figure 2: Example of format B input.

takes its input from the input layer. A value of N+2 means
the layer takes its input form the output layer. For values
between 2 and N+1, the layer would take its input from
the layer with the (N+1)th highest relative worth.

Where each layer sends its output to is determined in a
similar way, using positions 62-91 of the genotype. Each
of these genes stores a floating point value between 0 and
1. To determine where each layer sends its output to its
“sends-output-to” gene value is multiplied by N+1 and
rounded to the nearest integer. The resulting number
points to which other layer this one will send its output to.
We multiply by N+1 to allow for hidden layers sending
their output to any of the N hidden layers, as well as to the
output layer. A value of N+1 means the layer sends its
output to the output layer. For values between 1 and N, the
layer sends its output to the layer with the Nth highest
relative worth. No layer sends its output back to the input
layer.

III. DESCRIPTION OF THE TASK FOR THE NN

The task for the NN is based on experiments done by
Spelke, Breinlinger, Macomber and Jacobson on children
[5]. In their experiments, they habituated 2.5 to 4 month
old babies to a ball being dropped to the floor behind an
occluding screen. After the ball fell to the floor, the screen
was removed, revealing the ball on the floor. Once the
babies were habituated to this falling ball, a second
horizontal object was placed above the floor. Then both
the floor and the horizontal barrier were occluded by a
screen, and the ball was once again dropped from above.
When the screen was removed, the ball was revealed to be
either on the floor or on the horizontal barrier. By
measuring how long the infants looked at the scenes, as
well as other physical cues, the researchers estimated the
level of surprise of the children. Experiments showed
children found it surprising to see the ball below the
barrier, even though that was more consistent with the
habituating scenes. This seemed to indicate that children
at a very early age recognize the solidity constraints of
physical objects.

The task for the NN in this experiment was to imitate the
behavior described above. The input to the NN was a
representation of the initial and final position of the ball
and barrier it ‘saw.’ The output of the NN needed to be ‘1'
if the scene sequence is surprising (i.e., the ball seems to
have gone through the barrier) or ‘0' when it was not
surprising. In order to better corroborate GENDALC’s
ability to evolve topologies for different tasks, three
different input formats were used.

A. Format A

The first format used represented the position of the ball
and barriers with simple coordinates. Therefore, only four

numbers were needed to represent a scene. Both the initial
and final scene were shown at the same time, for a total of
eight input nodes.

B. Format B

The second input format represented each scene as a 10 by
10 matrix into which the position of the ball and the
barrier were drawn. The ball was represented by a single
input set to 1 at the ball’s position. The barrier was
represented by a horizontal row of 10 input nodes set to
1's at the barrier’s position. All other input nodes were set
to 0. Once again, both the initial and final scene were
presented simultaneously, which required 200 input
nodes. An example of this format is shown in figure 2.
Lines starting with ‘#’ are ignored by the NN simulator
used.

C. Format C

The third input format represented the balls and barriers
the same way as format B, but only one scene was
presented at a time. The output after the first scene was
always of no surprise (‘0'). The output of the NN needed
to be ‘1' if the scene sequence was surprising (i.e., the ball
seemed to have gone through the barrier). When it was
not surprising, the output of the NN needed to be ‘0.’
Figure 3 shows an example of input format C.

Figure 3: Example of format C input.

IV. EXPERIMENT PARAMETERS

The NN described in section II were evolved using a basic
genetic algorithm (GA). Each network was trained for 500
epochs with 400 scenes of the type described in section III.
Then its fitness was determined by evaluating its
performance when processing 2000 scenes. The sum of
square errors for the single output was computed and
assigned as the network’s fitness.

The NN aspect of the software runs was performed using
the batchman language in the SNNS neural network
simulation package. The genetic algorithm aspect was
performed using my personal modifications to the
GENITOR system developed by Darrell Whitley at
Colorado State University. During each generation of the
GA, all networks were selected a single time for mating.
During mating, two NN were combined by selecting two
crossover points and switching the part of their
corresponding genomes that lied between them.

With a random probability of 4% a single gene on a
network’s genome was altered, getting assigned a new
random value between 0 and 1. All networks were trained
with the batch backpropagation through time algorithm,
with a learning parameter of 0.2. All nodes used a
squashing logistic function defined as f(x) = 1/(1+e-x),
where x is the total weighted input to the node.

After evolving NN configurations, and in order to verify

consistent performance, networks were validated by
performing bootstrap validation [6]. During this process, a
set of 2000 input patterns was randomly generated, of
which 400 were used for training. Trained networks were
then tested with the other 1600 patterns. This process was
repeated 42 times. Numbers reported as network
performances are the average for all cross validation runs.

V. RESULTS

Table 1 outlines the performance of the top topology
evolved by the GENDALC system, and compares it
against the performance of other commonly used
topologies. The values reported are average errors for each
of the patterns presented during validation.

TABLE 1: COMPARISON OF AVERAGE OUTPUT ERROR FOR
DIFFERENT TOPOLOGIES

Topology Format a Format b Format c

Evolved by
GENDALC

0.499 0.499 0.355

Elman (SRN) 0.37 0.040 0.003

Jordan [8] 0.355 0.044 0.004

Feed forward,
single layer

0.38 0.004 0.003

Fully connected 0.574 0.640 0.538

These values show the GENDALC system to be highly
inefficient in finding solutions to the intended problem.
This is particularly true in light of the evidence that other
methods find better solutions. These results are specially
disappointing given that the GENDALC system achieved
error rates of less that 6% in natural language tasks that
appeared to be harder than the one presented here [1].

A closer look at the data utilized in the experiments used
here reveals how other topologies might be achieving their
performance values. Since the child development
experiments here imitated always had an initial scene
with a ball being placed higher that a barrier, a NN
simply has to determine if the ball ends below the barrier
in order to determine if the sequence is surprising or not.
That is, there is no need for the NN to pay attention to the
relative position of the ball and the barrier in the initial
scene, since the ball is always higher than the barrier in
the initial scenes. If and only if the ball ends lower than
the barrier, the sequence is surprising. This method of
solving the problem presented is confirmed when the
topologies are analyzed while processing input patterns.
For example, weights going to the context layer in Elman
networks have been set to very low values by the training
algorithm. This basically turns these networks into feed

Figure 4: Grammar used for previous NLP experiments.

forward networks.

In order to test all topologies for their ability to remember,
a new set of data was designed. In it, the initial position of
the ball could be above the barrier, or below it. In the
cases where the ball started above the barrier, the final
position could be either above or below. If it was below,
the output of the NN should be of 1, indicating surprise.
Otherwise it should be 0. In those cases where the initial
position of the ball was below the barrier, the final
position of the ball was also below the barrier. For these
cases, the output of the NN should be 0, indicating no
surprise. This mix of data requires a NN to pay attention
to both the initial and final ball position before
determining if the sequence was surprising or not.

An additional change to the data was that networks only
received a single scene at a time. Under what is labeled on
table 2 as input format A’, the position of the ball and
barriers are represented once again with simple
coordinates. Networks receive two inputs representing the
coordinates of the ball and two inputs representing the
coordinates of the barrier. At any particular instant,
though, either the initial or the final scene is being
presented, but not both. In format C’, scenes are
represented as in format C before, but with the
characteristics for the ball positions described in the
previous paragraph. Results for experiments that used this
data are presented in table 2.

TABLE 2: AVERAGE OUTPUT ERRORS FOR NEW INPUT SETS.

Topology Format A’ Format C’

Evolved by
GENDALC

0.259 0.279

Elman (SRN) 0.322 0.809

Jordan 0.473 0.468

feed forward, single
layer

0.75 0.812

fully connected 0.47 0.502

As we can see, the performance of the GENDALC system
is better than those of the other topologies tried. In fact, it
is better than its own performance for data where
remembering was not important.

VI. COMMENTS ON THE GENDALC SYSTEM

It is by now well known that no search algorithm is
optimal for all problem spaces [7]. It is therefore
important to identify what type of problem GENDALC
might be best suited for.

The topologies evolved by the GENDALC system have

proven to be successful at tasks that require remembering
input patterns they have seen in the past. This is true not
only for the task presented here, but also for natural
language processing task it has been used for before [1].
In that task NN received a sentence one word at a time
and had to incrementally build a description of the
sentence in its output nodes. For example, if the sentence
“the boy ran in the park” was entered, the network needed
to respond by indicating that “the boy” was a noun phrase,
and it acted as the agent of verb “ran”. The network also
needed to indicate that “in the park” was a prepositional
phrase modifying the verb “ran”.

The language the NN dealt with is illustrated in figure 4.
This grammar, which includes relative clauses, was used
to generate sentences with up to three noun phrases and
two verb phrases.

One interesting finding of this previous research was how
much better the topology evolved by GENDALC was in
comparison with other commonly used topologies. Table 3
presents a comparison of the performance of the best
topology evolved by GENDALC versus four other (preset)
topologies. While there are preset topologies that perform
only 7 percentage points below those evolved by
GENDALC in the child development task presented here,
in the apparently harder NLP task the closest preset
topology was 23 percentage points worse than the
topology evolved by GENDALC in the NLP task. In
addition, in absolute terms, preset topologies have a
performance around 65-72% of the maximum on both
tasks, while GENDALC’s performance jumps from
around 75% in the child development tasks to 96% in the
NLP task.

Looking at these two tasks, both relative to each other and
when changes were made to the child development task,

Topology
Ave. correct

outputs

Evolved by GENDALC 95.99

SRN 70.58

Fully connected 72.95

FGS [3] 71.85

N-P [4] 72.95

Figure 5: Evolved language processing topology.

seems to indicate that the performance of the GENDALC
system increases directly proportionally with the need to
remember the data presented to it.

TABLE 3: NETWORKS PERFORMANCE IN NLP TASK.

This might be caused by the type of topologies it can
easily evolve. The algorithm presented in section II above
lends itself to evolving topologies with many connections
between hidden layers. These layers are then available for
storing information being presented sequentially at the
input layer. Notice, for example, the topology evolved for
the NLP task shown in figure 5. The three different paths
leading to layer 2 allowed it to look at a sequence of three
consecutive words from the sentence being presented.
Given the grammar used, this was enough to determine
the syntax of the sentences being presented.

VII. FUTURE RESEARCH

I am currently analyzing the type of NN evolved by
GENDALC for the child development task discussed in
this paper. Looking at that topology and how it performs
its task can confirm how important it was to have the type
of feedback loop seen in the NLP experiments.

In addition, new experiments are already underway to test
GENDALC’s ability to evolve topologies for other tasks
that require remembering. One of these requires a NN to

read a musical composition one note at a time and then
determine if it is written using a major or a minor key.
Since there is no minimum number of notes across
compositions required to make this distinction, only NN
that can remember well should be successful.

On the other end of the spectrum, GENDALC will be used
to evolve networks for child development tasks that do not
require remembering. The task will be modeled after
research performed by Goren, Sarty, and Wu [9]. In it, the
authors found that newborn babies as young as one hour
old visually follow images of human faces longer than
other images. To imitate this process, NN will be
presented drawings with human faces and with other types
of images. Their ability to correctly categorize them will
be measured. Given that a complete drawing will be
shown simultaneously at the input layer, this experiment
will measure the ability of the GENDALC system in a
cognitive domain that does not require memory.

VII. CONCLUSIONS

This paper has presented a method of evolving neural
networks that appears to be better suited to solve problems
that require remembering the patterns it has previously
seen. Networks evolved with this method outperform other
commonly used topologies in these tests. This shows
promise for neural network simulations of human
cognition tasks that typically require the ability to
remember.

REFERENCES

[1] J. Davila, “Genetic Optimization of NN Topologies for the
Task of Natural Language Processing,” Proceedings of the
International Joint Conference on Neural Networks,
Washington, D.C., 1999.

[2] Elman, J. L., Distributed Representations, Simple Recurrent
Networks, and Grammatical Structure. Machine Learning, 7,
1991, pp. 195-224.

[3] Frasconi, P., Gori, M., and Soda, G., (1992) Local feedback
multilayered networks. Neural Computation, 4(1), 1992, pp.
120-130.

[4] Narenda, K., Parthasarathy, K. Identification and control of
dynamical systems using neural networks. IEEE Transactions
on Neural Networks, 1(1), 1994, pp. 4-27.

[5] E. Spelke, K. Breinlinger, J. Macomber, and K. Jacobson,
Origins of Knowledge, Psychological Review, 1992, Vol. 99,
No. 4, pp. 605-632.

[6] S. Weiss, and C. Kulikowski, Computer Systems that Learn.
Classification and Prediction Methods, in Statistics, Neural
Nets, Machine Learning, and Expert Systems, 1991. Morgan
Kaufmann. San Mateo, California.

[7] W.G. Macready and D.H. Wolpert, No Free Lunch Theorems
for Search, IEEE Transactions on Evolutionary Computation,
vol. 1 , no. 1, pp. 67-82, 1997.

[8] M. I. Jordan, Attractor Dynamics and Parallelism in a
Connectionist Sequential Machine. Proceedings of the Eighth
Annual Conference of the Cognitive Science Society, pp. 531-
546, New Jersey, 1986.

[9] C.C. Goren, M. Sarty, and P.Y.K. Wu. Visual Following and
Pattern Discrimination of Face-like Stimuli by Newborn Infants.
Pediatrics, 56, pp. 544-549.

