
The evolution of
arbitrary computational processes

To appear inIEEE Intelligent Systems

Lee Spector
School of Cognitive Science

Hampshire College
Amherst, MA 01002, USA
lspector@hampshire.edu

May 1, 2000

Genetic programming (GP) can be viewed as the use of genetic algorithms (GAs) to
evolve computational processes in the form of computer programs. In GAs more gen-
erally, the individuals in a population may be represented and interpreted in a variety
of ways, while in GP the individuals are usually treated as explicit computer programs
written in a subset or variant of a conventional programming language. The overall
algorithm of the GA is maintained in GP: search proceeds by iteratively evaluating
the fitness of the individuals in the population and by applying genetic operators such
as crossover and mutation to the higher-fitness individuals in order to explore other
promising areas of the search space. In GAs more generally the fitness evaluation step
can take many forms, while in GP an individual is evaluated for fitness at least in part
by executing the program and by assessing the quality of its outputs. GP techniques
have proven valuable for the evolution of structures other than computer programs (e.g.
neural networks [1] and analog electrical circuits [2]), but the emphasis on individuals
as literal computer programs is the most central defining feature of GP.

1 Computational Universality

The computational power of the set of elements out of which programs may be con-
structed — thefunction setand terminal setin the terminology of the field, or the
primordial oozein less formal parlance — determines the range of computational pro-
cesses that can potentially be evolved by GP. In the most frequently cited examples
this range is actually quite narrow. For example, in standard “symbolic regression”
problems, in which the goal is to evolve a program that fits a provided set of numer-
ical data, the evolving programs draw their components from an “ooze” that contains

1



numerical functions but no mechanisms for conditional or iterative execution. In many
other frequently cited problems only a small set of domain-specific functions are made
available, providing nothing approaching computational universality. But early work
in the field showed how one could generalize the potential computational structures
by including conditionals, implicit iteration (in which the entire evolved program is
executed repeatedly), and explicit iteration (with “time out” bounds and other mecha-
nisms to prevent infinite looping) [3]. In 1994 Teller showed that Turing completeness
could be achieved with the addition of a potentially unbounded indexed memory; any
Turing-computable function could then be evolved in principle [4].

A different dimension along which programs may be generalized concerns not the
absolute computational power of the representations but rather the ease with which
commonly employed programming paradigms can be evolved. Most human program-
mers are not content to program with machine code, Turing complete though it may be.
Key items in the human programmer’s toolkit are mechanisms that allow for the cre-
ation of reusable subroutines, specialized control structures, and data structures. More
recent work in GP has shown how all of these elements can be brought under evolu-
tionary control. Automatically defined functions(ADFs) allow evolving programs to
define subroutines and to call them from within the main program or from within other
ADFs, andarchitecture altering operationsallow the evolutionary process to dynami-
cally explore different program architectures (where “architecture” means the number
of subroutines and the number of parameters for each subroutine) as evolution pro-
ceeds [5].Automatically defined macros(ADMs) allow evolving programs to define
new iterative and conditional control structures in a manner analogous to ADFs [6].
Additional work has shown how GP can make use of rich type systems [7] and how
new data structures can be implemented by the GP process during evolution [8]. Fur-
ther research has explored the use of recursion as an alternative to iteration and various
ways in which other elements of the functional programming paradigm can be brought
under evolutionary control [9].

With all of these enhancements it would seem that the computational world is GP’s
oyster, and that arbitrary computational processes should be well within its reach. But
there are two problems with this optimistic assessment:

1. Just because a desired programcan be constructed out of the provided raw
materials it does not follow that itwill be produced by the evolutionary process. In fact
one will generally increase the size of the search space, and therefore also the amount
of work that must be done to find the desired program, when one adds unnecessary
additional computational power or flexibility. On the other hand it is often difficult to
determine the minimum required power or flexibility.

2. Recent results from physics and the theory of computation show that Turing
completeness, as traditionally defined, does not capture the full range of physically
possible computational processes. In particular, quantum computers can perform cer-
tain computations with lower computational complexity than they can be performed
on a Turing machine or on any other classical computer. If one wants full complexity-
theoretic universality then one must allow the evolving programs to perform quantum
computations.

2



Problem 1 is deep, fundamental, the subject of much current research, and beyond
the scope of this essay to discuss in any detail (but see, for example, many sections of
[10]). Problem 2 has recently been tackled and I outline its solution in the following
sections.

2 Evolving Quantum Programs

Quantum computers are devices that use the dynamics of atomic-scale objects to store
and manipulate information. Only a few, small-scale quantum computers have been
built so far, and there is debate about when, if ever, large-scale quantum computers will
become a reality. But quantum computing is nonetheless the subject of widespread in-
terest and active research. The primary reason for this interest is that quantum comput-
ers, if built, will be able to compute certain functions more efficiently than is possible
on any classical computer. For example, Shor’s quantum factoring algorithm finds the
prime factors of a number in polynomial time, while the best known classical factoring
algorithms require exponential time [11]. Another important example was provided by
Grover, who showed how a quantum computer could find an item in an unsorted list of
n items inO(

√
n) steps, while classical algorithms requireO(n) steps [12]. A brief in-

troduction to the core ideas of quantum computing was provided in an earlierTrends &
Controversiessection ofIEEE Intelligent Systems[13]; a more complete book-length
introduction that is nonetheless accessible to general readers was recently written by
Brown [14].

Because practical quantum computer hardware is not yet available we must test the
fitness of evolving quantum algorithms using a quantum computer simulator that runs
on conventional computer hardware. This entails an exponential slowdown, so we must
be content to simulate relatively small systems.

Our quantum simulatorQGAME (Quantum Gate And Measurement Emulator) rep-
resents quantum algorithms using the “quantum gate array” formalism. In this formal-
ism computations are performed at the quantum bit (qubit) level, so they are similar in
some ways to Boolean logic networks. A major difference, however, is that the state of
the quantum system at any given time can be asuperpositionof all possiblestates of
the corresponding Boolean system. For each classical state we store a complex-valued
probability amplitudethat can be used to determine the probability that we will find the
system to be in the given classical state if we measure it. (In accordance with quantum
mechanics the probability is determined by squaring the absolute value of the ampli-
tude.) Quantum gates are implemented as matrices that are multiplied by the vector of
probability amplitudes for the entire quantum system; see [15, 16] for details.

QGAME also allows one to measure the value of a qubit and to branch to different
code segments depending on the measurement result. Such measurements necessar-
ily “collapse” the superposition of the measured qubit.QGAME always followsboth
branches, collapsing the superpositions appropriately in each branch and keeping track
of the probabilities that the computer would reach each gate.

QGAME programs can be diagrammed in a manner analogous to classical logic cir-

3



H

Uθ

U2

f

M

S
W
A
P

1

0

1

0

1

0

Output

1

0

Figure 1:The gate array diagram for an evolved quantum program for theORproblem.

cuits, as shown in Figure 1. Such diagrams can be deceptive, however; unlike classical
logic gate arrays, in quantum gate arrays the values travelling on different wires may
be “entangled” with one another so that measurement of one can change the value of
another. TextuallyQGAME programs are represented as sequences of gate descriptions
and structuring primitives as shown in Figure 2.

To apply GP to the evolution of quantum programs we simply provideQGAME

elements as the raw materials and useQGAME as the execution engine for fitness eval-
uation. The program shown in Figures 1 and 2 is a simplified version of a program
that was produced by our GP system in this way. This program solves theORproblem
of determining whether the “black box” one-input Boolean functionf answers “1” for
either the input of “0” or the input of “1” or both. It does this using only one call to
f and with a probability of error of only1

10 , which is impossible using only classical
computation. (Classical probabilistic computation can achieve an error probability no
lower than1

6 ). This result, that quantum computing is capable of solving theORprob-
lem with only one call tof and an error probability of only110 , was first discovered with
the aid of GP (using an earlier version of our system).

4



;; start in the state |00>
;; apply a Hadamard gate to qubit 1

(HADAMARD 1)
;; apply a U2 rotation to qubit 0, with parameters:
;; PHI=-pi THETA=9.103027 PSI=pi/7 ALPHA=0

(U2 0 ,(- pi) 9.103027 ,(/ pi 7) 0)
;; call f with qubit 1 as input and qubit 0 as output

(F 1 0)
;; measure qubit 0, collapsing the superposition

(MEASURE 0)
;; this is the branch for qubit 0 measured as ‘‘1’’
;; swap qubits 0 and 1

(SWAP 1 0)
;; this marks the end of the ‘‘1’’ branch

(END)
;; this is the branch for qubit 0 measured as ‘‘1’’
;; apply a U-THETA rotation to qubit 1 with THETA=pi/4

(U-THETA 1 ,(/ pi 4))
;; end of evolved algorithm
;; read result from qubit 1

Figure 2:Textual listing of the evolved quantum program in Figure 1.

3 The evolution of arbitrary computational processes

With the addition of quantum computing primitives and quantum simulation for fitness
assessment, GP is in principle capable of evolving any physically implementable com-
putational process. In fact it has already “rediscovered” several better-than-classical
quantum algorithms and it has made a couple of new discoveries about the nature of
quantum computing. The full range of physically computable functions is now within
the scope of GP, and GP is beginning to find interesting new programs that had not
previously been discovered by humans.

But as mentioned above, computational power is a double-edged sword. Even
within classical domains one is often risking long periods of evolutionary drift and
stagnation if too much computational power is provided, for example in the form of
unnecessary memory capacity or control structures. Quantum computation provides
power even beyond that of a Turing machine, and the dangers are therefore even greater.
The task remains to understand the evolutionary dynamics of GP sufficiently well that
we can avoid getting lost in the enormous search space of possible quantum computa-
tions.

The practical strategy that we have followed, and that most GP practitioners follow,
is to use our intuitions to make reasonable guesses about the demands of the problems
we are attacking and to provide little more than the required computational power. For

5



example, many researchers limit the arithmetic functions in the function set for sym-
bolic regression problems to those that they think might be needed, and few would
include iteration structures, conditionals, or dynamic structuring mechanisms such as
ADFs or ADMs unless they have good reason to believe that they would be well uti-
lized. Similarly, we often limit the number and type of quantum gates that can be
included in evolving quantum programs, and we have begun to work on hybrid classi-
cal/quantum algorithms with limited quantum components.

This tension between universality and constraint, between the potential to produce
any arbitrary computational process and the need to limit the evolutionary search space
to one that can explored in a reasonable amount of time, is a critical issue for the fu-
ture of GP. Any advances that reduce the need for human intuition in resolving this
tension will significantly increase the applicability of GP, particularly in application ar-
eas (like quantum computing) for which the representational and computational power
requirements are not immediately obvious.

References
[1] F. Gruau, “Genetic micro programming of neural networks,” inAdvances in Genetic

Programming, K. E. Kinnear Jr., Ed., pp. 495–518. MIT Press, 1994.

[2] J. R. Koza and F. H Bennett, III, “Automatic synthesis, placement, and routing of electri-
cal circuits by means of genetic programming,” inAdvances in Genetic Programming 3,
Spector, Langdon, O’Reilly, and Angeline, Eds. MIT Press, 1999.

[3] J. R. Koza,Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, 1992.

[4] A. Teller, “The evolution of mental models,” inAdvances in Genetic Programming, K. E.
Kinnear Jr., Ed., pp. 199–219. MIT Press, 1994.

[5] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT
Press, 1994.

[6] L. Spector, “Simultaneous evolution of programs and their control structures,” inAdvances
in Genetic Programming 2, P. Angeline and K. Kinnear, Eds., pp. 137–154. MIT Press,
1996.

[7] T. D. Haynes, D. A. Schoenefeld, and R. L. Wainwright, “Type inheritance in strongly
typed genetic programming,” inAdvances in Genetic Programming 2, P. Angeline and
K. Kinnear, Eds., pp. 359–375. MIT Press, 1996.

[8] W. B. Langdon, “Data structures and genetic programming,” inAdvances in Genetic
Programming 2, P. Angeline and K. Kinnear, Eds., pp. 395–414. MIT Press, 1996.

[9] G. T. Yu, An Analysis of the Impact of Functional Programming Techniques on Genetic
Programming, Ph.D. thesis, University of London, 1999.

[10] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone,Genetic Programming – An
Introduction; On the Automatic Evolution of Computer Programs and its Applications,
Morgan Kaufmann, dpunkt.verlag, 1998.

[11] P. W. Shor, “Quantum computing,”Documenta Mathematica, vol. Extra Volume ICM, pp.
467–486, 1998.

6



[12] L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,”Physical
Review Letters, pp. 325–328, 1997.

[13] H. Hirsh, “A quantum leap for AI,”IEEE Intelligent Systems, pp. 9–16, July/August 1999.

[14] J. Brown, Minds, Machines, and the Multiverse: The quest for the quantum computer,
Simon & Schuster, 2000.

[15] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Quantum computing applications
of genetic programming,” inAdvances in Genetic Programming 3, Spector, Langdon,
O’Reilly, and Angeline, Eds., pp. 135–160. MIT Press, 1999.

[16] L. Spector, H. Barnum, H. J. Bernstein, and H. Swamy, “Finding a better-than-classical
quantum and/or algorithm using genetic programming,” inProceedings of the 1999
Congress on Evolutionary Computation. 1999, pp. 2239–2246, IEEE Press.

7


