
The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 1 of 9

Begin with an analog image, for instance, this
35mm slide is roughly 1.5" by 1" in actual size.

Our goal is to make a digital version of it. In
other words, we want to use numbers to
represent this image.

Begin by dicing it into small rectangles, known
as pixels. For each small rectangle we choose a
single numerical value that best represents the
range of intensities covered by that rectangular
area. Because of this, the number of pixels you
should use depends on what you want to
eventually do with the digital image. For
instance, if you want to create a small icon to
be used on a web page, a small number of
pixels is probably ok. If, on the other hand, you
want to print the image and frame it on your
wall, you would want to have a larger number
of pixels.

To illustrate the process, let's use a rectangular
array that is 15 pixels wide by 10 pixels high.

Note that the ratio of width to height in pixels
(15:10 or 1.5:1) equals the ratio of the original
image's width to height in inches (1.5":1.0").
This ratio is referred to as an image's aspect
ratio.

In general, the ratio of width to height in pixels
does not have to equal the image's physical
aspect ratio. When they are equal, the pixels
will be square. When they are not, the pixels
are rectangular.

The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 2 of 9

The number of pixels you choose to represent
your digital image is called the digital image's
spatial resolution. Spatial resolutions are
typically written as "width x height" or 15 x10
in our example.

Because we could have chosen 1723 x 2222 or
any other spatial resolution we wanted, you
cannot (without further information) claim that
an image with a particular spatial resolution
has a particular size in the real world.

That's important enough to repeat. The same
1.5" x 1" slide could be digitized into tens,
hundreds, thousands, millions or more pixels!
Spatial resolution and physical size are not
inherently related.

15 x 10 = 150 pixels
1723 x 2222 = 3,828,506 pixels

… but the original image is still 1.5" x 1.0"!

To connect physical size to spatial resolution,
you need another piece of data. We'll call it
pixel density, or the number of pixels per inch,
or simply ppi. Sometimes this is called dots
per inch or dpi, though the safest term to use
for now is ppi.

The pixel density is easy to compute if you
have the physical size in inches and the spatial
resolution. Just look at the units: If you want
pixels per inch, just divide the number of
pixels in one dimension by the number of
inches in that same dimension. Pixels per inch.

A digital image's pixel density often hints at its
reason for existence. Images with low ppi's are
generally destined for the web or for display on
computer monitors. High ppi's are needed for
film images and hardcopy output where the
digital image should look just like the original.

15 pixels / 1.5 inches = 10 ppi (width)
10 pixels / 1.0 inches = 10 ppi (height)

1723 pixels / 1.5 inches = 1148.7 ppi (width)
2222 pixels / 1.0 inches = 2222 ppi (height)

The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 3 of 9

Back to our 15 x 10 digital image example.
Once we have the grid we must calculate a
single intensity value for each pixel and store
this value as a number. Here's one way to
imagine doing this. Look back to the 15 x 10
grid we constructed over our source image and
average the intensity values that are visible
within each grid square. A way to approximate
this in your head is to look at the original
image and squint until the values blur together.
Determine appropriate pixel values from the
blurry image.

So far we've only said that we're going to use
numbers to represent the image. What numbers
should we use? An easy choice is something
called normalized color units. To use
normalized units we assign the number 1.0 to
pixels that are pure white and the number 0.0
to pixels that are pure black. For pixels in
between white and black, use a number
between 0 and 1 that accurately reflects the
intensity. There. We have a digital image! The
image on the right shows our beautiful 15 x 10
version of the original slide.

Clearly, 15 x 10 is not an adequate spatial
resolution to accurately replicate our original
beach image! We'll have to use more pixels if
we want to capture more of the original detail.
For the time being, though, we'll stick with this
spatial resolution to make a few points.

The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 4 of 9

Has anything we've done so far required a
computer? No! We can make digital images
with a pen and paper if we like. But all the fun
happens when we start playing with digital
images on computers. So we have to go one
step further and learn how computers store
numbers. Sadly, it's more complicated than you
might think.

At their core, computers count using bits. A bit
is like a light switch in that it can have only
two states: on and off. It is standard practice to
represent on with the number 1 and off with 0.

on or off
1 or 0

One bit only has two states and can therefore
only represent two unique values. If we wanted
to, we could assign the "on" state to the color
white and the "off" state to the color black and
store our beach image that way. Recall our use
of normalized color units where we defined 1
as white and 0 as black. Great! When a bit has
value 0 we can think of this as color value 0
(black) and when our bit is1 we can think of it
as color value 1 (white). Any color values
between 0 and 1 would get assigned to
whichever intensity is closer since we're only
allowing ourselves to store a 0 or a 1. This is
what that image looks like.

Clearly, two intensity values aren't enough to
capture the dynamic range of light present in
the original slide. Consider an extreme case
where the original image is a smooth gradient
from black to white. Using one bit to store
each number would force all gray values to
either pure black or pure white, thereby
throwing away a lot of the original
information.

The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 5 of 9

The trick to representing more values on a
computer is to group bits together. For
instance, two bits taken together can be in any
one of four different states (see right). If each
state is assigned to a value, two bits can store
four different values. Four different values
means four different intensities on the black-
to-white intensity ramp. That's certainly better
than two when it comes to replicating our
original image.

 bit A bit B
state 1: 0 0
state 2: 0 1
state 3: 1 0
state 4: 1 1

This is basic base two or binary counting. The
number of unique settings of n bits taken as a
group is 2n .

number of unique values = 2n
1 bit = 21 = 2 values
2 bits = 22 = 4 values
3 bits = 23 = 8 values

… and so on.

The bit depth of an image is defined to be the
number of bits used to store the numerical
value in each pixel. The single-bit image we
saw above has a bit depth of one bit per pixel.
This new image on the right uses 3 bits per
pixel. The formula above (23 = 8) tells us that
there are 8 unique states possible when we use
3 bits. This image was made by mapping those
8 states to 8 different intensity values spread
between black and white.

Why the term bit depth? Spatial resolution
determines the number of atomic units (pixels)
that define an image's width and height. Bits
are the atomic units that define the number of
colors each pixel can possibly take on. Picture
the digital image as a 3D array of width,
height, and number of bits instead of just a 2D
array of pixels. Then, depth is a sensible
choice.

The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 6 of 9

You can generally use as many bits per pixel as
you would like. How many should you use?

For most purposes 8 bits per pixel (28 = 256
unique values) is enough to keep you from
seeing what are known as quantization
artifacts.

The image on the right has a spatial resolution
of 817 x 539 (much higher than 15 x 10) but a
bit depth of only 4 bits per pixel. 4 bits means
that each pixel can take on only one of 16
different values between black and white. You
can clearly see what are called banding
artifacts as the bright areas around the sun are
forced to take on one of these 16 values.

It is probably clear by now that digital images
look more like their analog counterparts when
the spatial resolution and the bit depth are
high. The first image in the handout, for
instance, is actually not a slide - it is a digital
image (ooh, I'm so tricky). It has a spatial
resolution of 817 x 539 pixels and has a bit
depth of 8 bits per pixel. If you were fooled
into thinking of it as a non-digital image then
the choices of spatial resolution and bit depth
were good ones.

817 x 539 = 440,363 pixels
8 bits per pixel = 28 = 256 different values

The reason that we can't simply use the biggest
spatial resolution and bit depth possible when
we make digital images is because computer
memory is finite.

Each bit of information that is used for our
image needs to be stored somewhere in the
computer. Luckily, computer memory is
measured in units that are closely related to
bits.

The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 7 of 9

A byte is a group of eight bits and can
therefore represent 256 unique values. The bit
depth of the first image of the handout is 1 byte
per pixel.

1 byte = 8 bits

The memory required to store a particular
image is equal to that image's size in bytes.
The bit depth of the image determines how
much memory each pixel requires, and the
spatial resolution of the image determines the
total number of pixels. To compute the total
memory required to store an image you simply
multiply the spatial resolution by the bit depth.

bit depth = memory per pixel
spatial resolution = number of pixels

bit depth x number of pixels = total memory

The first image on the handout has a spatial
resolution of 817 x 539 and a bit depth of 8 bits
per pixel. Determining the memory footprint
of this image is straightforward. See the
computation to the right to discover that the
memory required to store that image is over
440,000 bytes! (As you'll learn, that's actually
not so much)

817 x 539 = 440,363 pixels
8 bits per pixel = 1 byte per pixel

440,363 pixels x 1 byte/pixel = 440,363 bytes

Computer memory is so bountiful these days
that it is hardly ever counted in bytes. Instead,
larger units are used. A thousand bytes is
called a kilobyte (kb), and a million bytes is
called a megabyte (Mb).

1,000 bytes = 1 kilobyte
1,000,000 bytes = 1 megabyte
1,000 kilobytes = 1 megabyte

One generally converts the memory footprint
to whichever byte units (kb or Mb) make for
the easiest number to say/write/understand.
Rounding up or down is just fine as long as
you stay in the ballpark. As we've seen, the
first image on the handout has a memory
footprint of 440,363 bytes. Changing units, this
value is also approximately 440 kb or 0.44
Mb. I think 440 kb is the easiest in this case
since you don't need to use a decimal.

440,363 bytes = 440.4 Kb = 0.44 Mb

The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 8 of 9

Let's compute the memory required to store the
version of the image that had the obvious
banding artifacts. Recall, that image was the
same spatial resolution but only used 4 bits per
pixel.

440,363 pixels x 4 bits/pixel = 1,761,452 bits

Converting bits to bytes is easy since eight bits
equals one byte. I encourage use of a calculator
for conversions like this.

1,761,452 bits / 8 (bits/byte) = 220,181.5 bytes
220,181.5 bytes = 220 kb

Note that the memory footprint of the banded
image is smaller. That should not be surprising.
There is always a trade-off between memory
and image quality.

(Do you understand why the banded image can
be stored in exactly half the memory required
to store the original image?)

220 kb for the banded image
440 kb for the good-looking image

Here's a thought experiment. Imagine that your
computer has 64 Mb of RAM. RAM is
Random Access Memory, the memory that
your computer uses to store an image while it
is running. If you choose a bit depth of 1 byte
per pixel, how many image pixels could you
store in your computer's RAM?

Just use the equation to compute memory in
reverse. Be careful that you balance your units
(note how I used "megapixels" to represent
millions of pixels).

You should consider trying these conversions
in your head as long as you are working with
the same units. 64 million bytes of memory
and one byte per pixel leads to 64 million
pixels without too much effort, right?

64 Mb / 1 (byte/pixel) = 64 Megapixels
or

64,000,000 byte / (1 byte/pix) = 64,000,000 pix

The A rt an d S ci en ce of Di gi t al I magi n g Hampshire College CS 197
Digital Image Representation Page 9 of 9

You need to become fluent with the
conversion between spatial resolution/bit
depth and memory!

Try to answer the following questions.

of pixels x bytes per pixel = # of bytes
or

spatial resolution x bit depth = memory

1) How many unique values can be represented with 5 bits?

2) How many unique values can be represented with 24 bits?

3) How many bits are in 20 Kb?

4) You have an image that is 250 x 400 pixels in spatial resolution. The image has a bit depth
of 8 bits per pixel. What is the memory footprint of the image, in bytes?

5) You have a digital image that takes up 240 Kb. You know that the spatial resolution is 600
x 200. What is the bit depth (in bits or bytes)?

6) Your computer has 36 Mb of RAM. What is the spatial resolution of the largest square
image you can store at 1 byte per pixel?

