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The Beauty of Numbers 
We've jumped through a lot of hoops to represent an image with numbers. Just to recap, 
we had to: 
 

• chop the image into (many!) discrete units called pixels. 
• assign a number (greyscale) or 3 numbers (color) to each pixel to represent the 

intensity/color of each pixel. 
• store all of those numbers in binary so that a computer can understand them. 

 
Okay, it wasn't that many hoops.  
 
But here we are. And now it's time to reap the benefits of having our picture made up of 
numbers by using math to modify the numbers. 

Notation 
To perform mathematical operations on our digital images we're going to follow this 
pattern: start with a source image, then modify it through some mathematically-defined 
operation to create a new (presumably different) destination image. Let's define the 
source image as  X and the destination image as Y. I use capital letters as a kind of short 
hand to refer to the entire image, which means that the operation we perform happens to 
every pixel. 
 
As an example, a "no op" operation (i.e., one that doesn't do anything) would look like 
this: 
 
Y = X 
 
In other words, every pixel in the destination image is set to the exact same value as the 
corresponding pixel in the source image. 

Addition/Subtraction 
What happens if we add or subtract a number from a pixel? In the case of a greyscale 
pixel, adding a value will make the pixel brighter and darkening will make the pixel 
darker.  
 
Y = X + v 
Y = X - v 
 
Where v is a single number in the case of greyscale images. 
 
Some individual pixel examples: 
 
pixel value + offset value = new pixel value 
0.1 + 0.5 = 0.6 
.75 + .2 = .95 
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.5 - .5 = 0.0 
… 
 
We have to be careful not to go below 0.0 or above 1.0 while doing the math, otherwise 
we'll have values that are beyond the valid range of intensities that we originally defined 
(What's darker than black? What's whiter than white? The latter question actually has an 
answer, called "super white," that we'll get to sometime later). This process of limiting 
each pixel to lie in the range between 0 and 1 is called clamping. 
 
0.5 + 1.0 = 1.5 (invalid!) 
0.5 + 1.0 = 1.0 (clamped, valid) 
0.5 - .9 = -0.4 (invalid!) 
0.5 - .9 = 0.0 (clamped, valid) 
 
Color doesn't complicate things too much. Instead of adding a single offset value, you 
add a vector value (a triple) to the color: 
 
[Roriginal Goriginal Boriginal] + [Roffset Goffset Boffset] = [Rfinal Gfinal Bfinal] 
[0.1 0.5 0.3] + [.2 .2 .2] = [.3 .7 .5] 
[0.1 0.5 0.3] + [0 .5 0] = [.1 1.0 .3] 
… 
 
The R, G, B values of the offset you want to add or subtract could all be the same or 
could all be different. For instance, you can brighten the overall red of a picture while 
simultaneously darkening the overall green and blue by adding an offset like [0.1 -0.2 -
0.2] to each pixel in your RGB image (Note: by allowing for both positive and negative 
values in the offset, we can accomplish both addition and subtraction just by using 
addition). Once again, we have to be sure to clamp so that the values remain valid. 

Caution 
What happens if you take a digital image, add .3 to every pixel, then subtract .3 from 
every pixel? The math seems quite straightforward: 
 
X + 0.3 - 0.3 = Y 
X = Y 
 
HOWEVER, this does not include the effects of clamping! So in general, adding an offset 
then subtracting the very same offset will NOT give you the image you started with. With 
the example offset of 0.3, for instance, any pixels that started with values between 0.7 
and 1.0 will end up as 0.7. Why? Let's go through it. 
 
Here is the addition step: 
 
X + 0.3 = Y 
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y is the new pixel value. If x is greater than 0.7, however, y will end up greater than 1.0. 
So our automatic clamping step (remember, we want to keep the color values valid) will 
kick in and set y explicitly to 1.0. Now we do the subtraction: 
 
Y - 0.3 = Z 
 
For all pixels x that are between 0 and 0.7, this process will result in z = x. But for those 
that were clamped to 1.0, z will end up equaling 0.7 while x might be anything between 
0.7 and 1.0. 
 
This is called a loss of information. The mathematical manipulation you tried to use, as 
innocent as it seemed, actually caused the pixel values that were originally between 0.7 
and 1.0 to all be set to 0.7. So if you had some detail in the bright portions of the original 
image it would now be lost. So tread carefully. The most successful technique for 
ensuring that you are back where you started is to use your software packages "undo" 
feature instead of trying to "undo" the mathematical operation that you just attempted.  
 
(insert graphs and images to demonstrate addition/subtraction and clamping) 
 

Multiplication (and Division) 
Multiplication (and, by extension, division) can also be used to alter an image though the 
effects are subtly different from addition. Consider multiplying each pixel value by a 
number less than 1.0: 
 
X * 0.2 = Y 
 
The resulting pixels, y, are all 20% or their original values (x). This is different from 
addition in two important ways: it keeps black pixels black, and it changes brighter pixel 
values more than it changes darker pixel values. Recall: addition changed every pixel by 
the same amount. 
 
An 80% reduction like the example above will darken the image but won't result in any 
clamping (can you prove this to yourself?). If we multiplied by a number greater than 1, 
however, we would risk clamping. 
 

Caution (again) 
Does this mean we can apply a multiplier of 0.5, then change our minds and multiply 
again by 2.0 and return to the original image? Let's see: 
 
X * 0.5 = Y 
Y * 2.0 = Z 
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The 0.5 multiplier won't result in any clamping, so it seems that x would equal z. 
HOWEVER, this is not true! To understand why, we need to go back to how computers 
store numbers. 
 
With a bit depth of 8 bits per pixel, the computer can store a maximum of 256 unique 
values. Let's assume those values are evenly distributed in the range 0 to 1. In other 
words, the values are: 
 
0 = 0 
1/255 = 0.00392 
2/255 = 0.00784 
3/355 
… 
255/255 = 1.0 
 
Now let's take a candidate pixel value of 3/255. If we multiply this pixel by 0.5 (or ½), 
the new pixel value *should* be 3/510. But the computer, forced to store this number in 
only one of 256 possible values, has to choose something different. The two closest 
options are 1/255 and 2/255. They're both equally good… and equally bad. To see why, 
let's try to reverse the operation by multiplying by 2. 
 
3/255 * ½ = 1.5/255. Rounded down (say) this is 1/255. 
1/255 * 2 = 2/255 which does NOT equal 3/255! 
 
Once again there is information loss. 
 
 
 
 


