
Introduction to Digital Imaging (working title) © Chris Perry
DRAFT text, chapter 4 partial (2/16/2005)

 page 1 of 5

(note: the skull image that appears below was borrowed from The Art and Science of
Digital Compositing by Ron Brinkmann. Should these notes ever be published, it will of
course be replaced!)

Blending
As we've learned, the following algorithm allows us to make localized changes to the
colors in a digital image:

• Assign a value S to every pixel in the image. Assign S = 1 to the pixels we want
to change, assign S = 0 to pixels we want to keep the same as the original (or
“beginning” image). Assign an intermediate value of S (say, 0.5) to those pixels
that we want to be a blend between the beginning and the altered image.

• Apply one or more of our mathematical color-changing operators to our original
image. This creates a new, temporary image we'll call P, the processed image.

• Using the different values of S, blend between P and the beginning image B to get
a new final image F.

Here it is mathematically:

F = S * A + (1 - S) * B

Checking the accuracy of this equation is easy. Where S = 1, the first term evaluates to A
and the second term always evaluates to zero, no matter what values are stored in the
original image B. Where S = 0, the first term always evaluates to zero and the second
term always evaluates to B. If S = .5, F is an equally-weighted mix of half of A and half
of B. This looks good!

Visual example (you may want to look at the PDF online-- these are color images):

Beginning image Altered image Blending parameter S

Introduction to Digital Imaging (working title) © Chris Perry
DRAFT text, chapter 4 partial (2/16/2005)

 page 2 of 5

Final image

Up to this point, the image-manipulating operators we've explored have all been
operators that take one image as input and return one image as output (recall
multiplication, addition, etc). Interestingly enough, the blending equation we just derived
can itself be considered an image operator too. One that requires three input images to
function.

Blending Two Completely Different Images
For the moment, forget that the beginning and the altered image have anything to do with
each other. They really don't have to: we've put no constraints on the kinds of image-
altering operations you can perform on B to get A. So imagine that A is an entirely
different image than B and consider what the blending equation gives us with the same
beginning image that we had above.

Blending image S "Altered" image A New Final image F

All of a sudden this looks like something different is happening. What is it? Close (or not
so close) comparison of the S image with the new A image shows a high-level of
correspondence between the features in each. What I mean by this is that where the skull
in A has edges is exactly where the S image has edges. This is of course by design: this
example is meant to demonstrate an important feature of the blending operator when the
S image features are correlated or "aligned" with those in the A image.

Introduction to Digital Imaging (working title) © Chris Perry
DRAFT text, chapter 4 partial (2/16/2005)

 page 3 of 5

The new final image looks a lot like a picture of a skull that was placed over a bunch of
leaves. In fact, if we consider this a little more closely, we can see that the S image is
acting as an opacity value for A such that when it's blended with B it appears to have
been placed over B.

Opacity or Alpha or Matte
This kind of thing happens so frequently in digital imaging that people decided it might
be useful to have a fourth value stored with each pixel. Along with the R, G, B triplet for
color, images can have an optional opacity or alpha value (often called an image’s matte)
that allows for easy compositing using the blending operator. Alpha, just like S, ranges
from 0 to 1. 0 is fully transparent, 1 is fully opaque. This changes the blending equation
to something more specific, called the "over" operator:

A over B = alpha * A + (1 - alpha) * B

This is just the blending operator with alpha substituted for S. The reason it merits a new
operator name is because now alpha is understood to be a part of image A. In other
words, it isn't a separate image S anymore.

Premultiplication and Headaches
Now, as unanimous as the decision was to append an alpha value to each pixel value,
there are two schools of thought on how to go about doing it.

The first approach is quite simple: Just tack on the alpha value without touching the R, G,
or B values. This certainly seems like a good idea. That is, until you imagine a pixel with
an alpha value of 0. Alpha of 0 means that the pixel is completely transparent. In other
words, it is see through. So then does it make any sense for the pixel to have any R, G, or
B value other than 0? If you composite this pixel over another one (see the "over"
equation), the alpha * A term will always evaluate to 0, no matter what the RGB values
are in A. In other words, it seems odd to store color values that mean nothing due to an
image’s transparency.

The second approach is to pre-multiply the RGB values in the image by the alpha value,
thereby "baking" the transparency effect into the colors themselves. Pixels with alpha of
0 will also have RGB equal to 0. Pixels with alpha of 1 will have the original RGB
values. An image stored this way is called a pre-multiplied image. It's the most common
form, in fact.

The real truth here is that the decision was based on computation speed. A lot of
computer math has to be done when evaluating the over equation (lots of "multiplies and
adds" in computer-speak). Pre-multiplying an image's RGB by its alpha saves much of
this work (the first term of the over equation no longer has a multiplication part if it's
been baked into the image). Of course, computers are fast enough these days that we
probably wouldn't notice the extra time hit. Ironically, we now have to spend more time
teaching and learning about pre-multiplication (and debugging problems related to it)

Introduction to Digital Imaging (working title) © Chris Perry
DRAFT text, chapter 4 partial (2/16/2005)

 page 4 of 5

than the computers would ever have had to spend compositing the un-pre-multiplied
images!

Other Prepositions
Consider the following two images that have alpha channels (opaque where there's color,
transparent where there's black):

A B

We just spent a fair amount of time considering the over operator, so the following
composite should make perfect sense:

A over B

It's fun (and ultimately useful) to explore what I call the other preposition operators. See
if you can infer what each of the operators do based on their names and the resultant
images:

A inside B A outside B A atop B

Here are the answers:

A inside B is computed by taking the R, G, B, α values of A and multiplying them by the
α value of B. Why is it called inside?

A outside B is computed by taking the R, G, B, α values of A and multiplying them by
the inverted matte image of B (aka 1 - B’s α).

A atop B can be thought of as a two-step composite: (A inside B) over B. I use
parenthesis here to denote the order of operations.

What might "A under B" look like? (answer: B over A)

Introduction to Digital Imaging (working title) © Chris Perry
DRAFT text, chapter 4 partial (2/16/2005)

 page 5 of 5

Looking at the examples above, it appears that A inside B combined in some way with A
outside B should yield A (look at the images yourselves). Let’s see if we can figure out
how to combine them.

Notation break: now that we are using multiple images, I’m going to denote the R, G, B,
and α channels of an image with a subscript to show which image they come from. For
instance, the red channel of image B is RB. I will also now consider the image name (A,
for instance) to mean ALL channels of image A (namely, R, G, B, and α).

Using this new notation, let’s re-write the equations for inside and outside.

A inside B = αB * A
A outside B = (1 - αB) * A

Distributing the multiplication in A outside B makes it pretty clear how we can get A
back:

A outside B = A - αB * A

So simply adding A inside B to A outside B will give us A back, and thus the following
equality:

A = (A inside B) plus (A outside B)

Matte Lines
Let’s try another one. It looks as if A plus (B outside A) is the same as A over B. Take a
look and see if you agree with this guess. Let’s check it mathematically:

B outside A = (1 - αA) * B
A plus (B outside A) = A + (1 - αA) * B (equation 1)

A over B = αA * A + (1 - αA) * B (equation 2)

Aha! There’s a little difference. Look at the first terms. In equation 1, we add in the full
value of image A. In equation 2, however, we add in A multiplied by its own matte.

In other words, what we thought might be an equality by inspection was in fact NOT.
Anywhere that A’s matte doesn’t equal 1 (namely, on the edges) there will be slight
differences between the two composites. It may or may not be noticeable in this case,
however, I can assure you that some day in your travels you will discover a matte line.

In short, a matte line is an unwanted artifact that you will notice on the matte border of an
image. Matte lines result from many different things, but most frequently are due to
sloppy use of alpha channels and pre-multiplied images. If you notice an artifact like this
in your work, you may be able to solve it through careful examination of your
compositing operations like we’ve just done, above.

