Answer the questions below based on the following solution:
You have $\mathbf{4 0 0} \mathbf{~ m l}$ of a $\mathbf{1 5} \mathbf{\%} \mathbf{M g C l}_{\mathbf{2}}$ solution
($\mathrm{MW} \mathrm{Mg}=24.3, \mathrm{Cl}=35.5$)
(Each mole of $\mathrm{MgCl}_{2}=3$ osmoles in solution)

Show your work.

1. Since this is a 15% solution, how many grams of MgCl_{2} are in 100 ml of the solution?
15% means $15 \mathrm{~g} / 100 \mathrm{ml}$. $\mathbf{1 5 g}$
2. How many grams total are in the 400 ml ?
$15 \mathrm{~g} / 100 \mathrm{ml}=\mathrm{Xg} / 400 \mathrm{ml} \quad X=\underline{60 \mathrm{~g}}$
3. How many grams does 1 mole of MgCl_{2} weigh?

Molecular weight if $\mathbf{M g C l}_{\mathbf{2}}$ is $\mathbf{2 4 . 3 + 3 5 . 5 + 3 5 . 5 = 9 5 . 3}$.
One mole therefore weighs $\mathbf{9 5 . 3 \mathrm { g }}$
4. How many moles are in the $400 \mathrm{ml} \mathrm{MgCl}{ }_{2}$ solution?

There are $\mathbf{6 0} \mathbf{g}$ in the $\mathbf{4 0 0} \mathbf{~ m l ~ s o l u t i o n . ~ C o n v e r t ~ g r a m s ~ t o ~ m o l e s . ~}$
$(60 \mathrm{~g})(1 \mathrm{~mole} / 95.3 \mathrm{~g})=\underline{0.63} \mathbf{~ m o l e s}$
5. How many osmoles are in the $400 \mathrm{ml} \mathrm{MgCl}{ }_{2}$ solution?

Each mole is $\mathbf{3}$ osmoles. Convert moles to osmoles.
0.63 moles $(3$ osmole $/ \mathrm{mole})=\underline{1.89}$ osmoles
6. What is the osmolarity of the MgCl_{2} solution?

With 1.89 osmoles in $\mathbf{4 0 0} \mathbf{~ m l}$, how many osmoles would be in $\mathbf{1}$ liter?
1.89 osmoles $/ 400 \mathrm{ml}(1000 \mathrm{ml} / \mathrm{l})=4.73$ osmoles $/$ liter

Osmolarity is $\underline{4.73 \mathrm{OsM}}$

