Regulation and homeostasis
- List and describe the components in specific 2nd messenger signal transduction pathways
- Define each of the following and predict their effect on signal transduction:
 - one ligand on one receptor (tonic control)
 - receptor isoforms (one ligand, >1 receptor)
 - agonists for one receptor (>1 ligand, receptor)
 - two ligands, two receptors (antagonistic control)

Class problem set:
1. Norepinephrine (NE) is a large protein. Would the receptors for NE be inside the target cell or on the target cell membrane?
2. When NE binds an α₁ receptor on a cell’s membrane, there is an increase in IP₃ and DAG in the cell. What membrane bound amplifier enzyme is activated to cause the IP₃ and DAG increase?
3. What ion will be increased in the ICF due to IP₃?
4. What ICF enzyme will be activated by DAG?
Receptor isoforms:

Norepinephrine acts on α and β receptors.

Note, receptors are on different tissues and illicit different effects.

Agonists for same receptor.

Norepinephrine and Epinephrine activate the same receptors.

Example of antagonistic control through different receptors on same tissue

Norepinephrine and Acetylcholine activate different receptors for opposite effects.

- NE speeds heart rate, adrenergic receptors
- ACh slows heart rate, cholinergic receptors
Predict the responses for the following:

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Effector tissue</th>
<th>Response?</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ NE</td>
<td>blood vessel with α₁ receptors</td>
<td></td>
</tr>
<tr>
<td>↑ ACh</td>
<td>blood vessel with α₁ receptors</td>
<td></td>
</tr>
<tr>
<td>↑ NE</td>
<td>heart SA node cells</td>
<td></td>
</tr>
<tr>
<td>↓ NE</td>
<td>blood vessel with β₂ receptors</td>
<td></td>
</tr>
</tbody>
</table>