Electrophysiology and neurotransmission

- State how movement of Na⁺, K⁺, Ca²⁺ or Cl⁻ across a cell membrane will affect membrane potential.
- *Explain the ionic basis for the resting membrane potential.*
- Diagram a neuron and identify specialization.
- Describe the ionic basic for a graded potential,, EPSP, IPSP and action potential.

- Concentration of ions inside and outside the cell.
 Permeability of the membrane to these ions.
- Inside the neuron is high in $K^{\scriptscriptstyle +} \,and$ low in $Na^{\scriptscriptstyle +}.$
- Outside the neuron it's opposite, high in Na⁺, low in K⁺.
- At rest, the permeability of the membrane is high for K^{+} and very low for Na^{+} and $Cl^{-}\!\!.$

For the moment we will assume that the permeability of the membrane to $Na^{\scriptscriptstyle +}$ and $Cl^{\scriptscriptstyle +}$ is zero.

Membrane potential would be = E $_{K+}$

 K^+ is the most permeable to a cell membrane,but the $Na^+,\,Ca^{++},\,Mg^{++}$ and Cl^- permeability is actually **not zero.**

Use **Goldman-Hodkin-Katz equation** to calculate membrane potential based on permeabilities of multiple ions.

